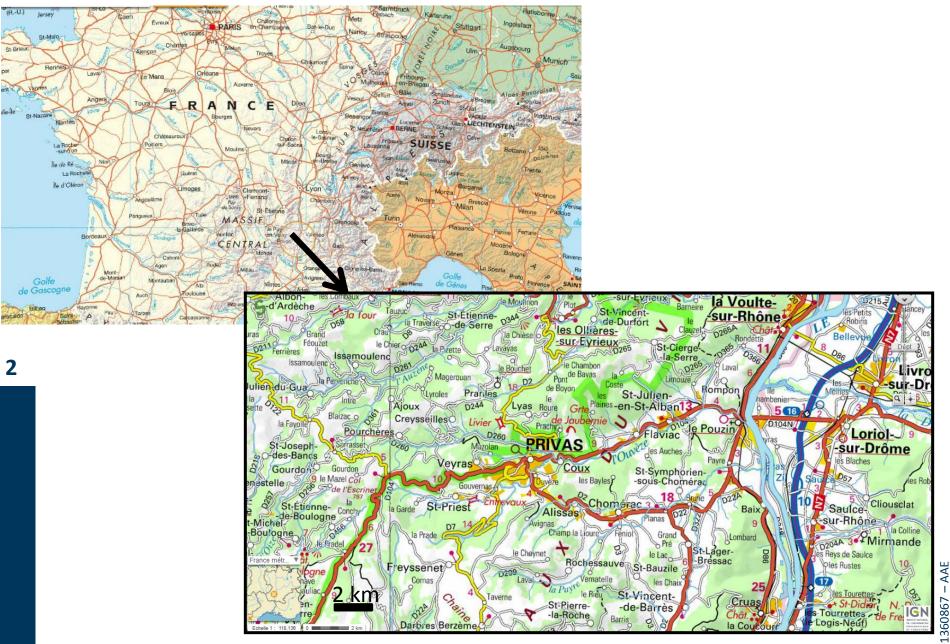


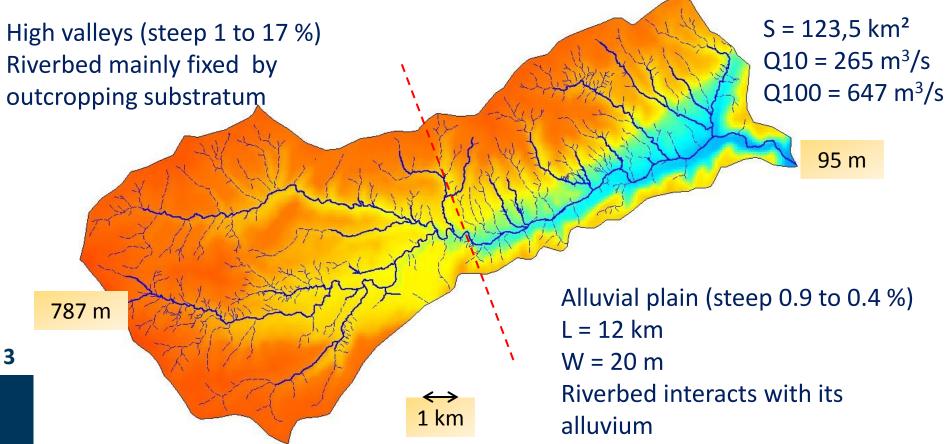
1

RESTORATION OF AN ALLUVIAL MATTRESS USING ARTIFICIAL ARMOUR LAYER



Experimental study on the River Ouvèze (France)

Aurélie ANDRE / Aurélie MALBRUNOT / Bernard COUVERT


1. Geography

In the alluvial plain (subject of this study) generalised incisions have led to a riverbed fixed by substratum. The alluvial mattress has disappeared on a very large part.

2. Geomorphological context

<u>1st reason : Low level of morphological activity</u>

- ✓ Substratum (marl) always been close to the riverbed
- Thin alluvial mattress : 1 to 2 m at the beg. of the 20th century (limestone, mainly granite)
- ✓ The constant supply of bedload material protects the vulnerable substratum

Natural transport has been estimated at 4 000 m³/year (30 m³/km²/year)

2. Geomorphological context

<u>2nd reason : The action of man</u>

- ✓ River training with extraction (after dramatic flooding of 1967-1968)
- Extraction of alluvial material for valorisation : Total volume of extraction since
 1970 is estimated at 400 000 m3 = a century of solid transport
- ✓ Destruction of weirs
- ✓ Reforestation of hillslopes

- Outcropping of the substratum
- \checkmark Alluvial mattress has disappeared revealing the outcropping rocky substratum

2. Geomorphological context

Irreversible incision of the friable marly substratum

- ✓ Under water flow, shoks, frost, drying conditions
- ✓ River bed has found a new equilibrium at between 1 to 2 m below its natural level

6

Harmful to the environmental quality of the riverbed

- ✓ Substrate is less welcoming for aquatic wildlife
- ✓ Reduction of the river's self-cleaning capacity
- ✓ Disconnection of the riverbank vegetation

Principles

✓ Deficit of material transport+ risk of substratum irreversible incision

all cleaning operations should be halted

✓ Program :

7

- Protective measures : restoration of an alluvial mattress
- Measures to restore the river morphodynamics by promoting mobility
- Measures to restore ecological continuity (analysis of weirs)
- Measures to restore the riverbank vegetation and its ecological continuity
- A system to monitor and oversee the operations to be carried out

Principles

✓ Deficit of material transport+ risk of substratum irreversible incision

all cleaning operations should be halted

- ✓ Program :
 - Protective measures : restoration of an alluvial mattress
 - Measures to restore the river morphodynamics by promoting mobility
 - Measures to restore ecological continuity (analysis of weirs)
 - Measures to restore the riverbank vegetation and its ecological continuity
 - A system to monitor and oversee the operations to be carried out

– AAE

360867

4. Artificial riverbed armouring for protection

Method most frequently used : creation of weirs

- ✓ Capture of alluvium creating a deficit downstream
- ✓ Lengthy weir sedimentation
- ✓ Increased risk of flooding
- ✓ Fish movement impeded
- ✓ High cost...

In this case :

9

- ✓ Main problem : loose of alluvial mattress
- ✓ Minor problem : lower level of riverbed
- River bed has regained its equilibrium, with a profile parallel to the original one, 1 or 2 m below

Recreate a pebble mattress in the areas most at risk of substratum outcropping

Principles :

- Protect substratum with artificial riverbed armouring
- ✓ Use coarse alluvium (largest 10% of the alluvium particle size range)

Difficulties :

10

- Iocal populations prefer material extraction (against flooding)
 Projects are designed to avoid increase flooding
- Scepticism of technicians regarding long-term durability
 Localised mobility isn't excluded in the event of major flooding
 - Length, cost and supply Experimental study, running pilot schemes before generalising the process (if positive results)

• Choice of 4 pilot sites :

- River sections where substratum has been entirely exposed and most fragile River with outcropping substratum is too long
- Different configurations to have a better feedback Limit singularities impacts + Test different types of mattress structures
- ✓ Close to material sources Different sources → different sites + Availability of different size of pebbles + large quantity of material of large size

Dimensional design criteria :

- ✓ Minimum particle size corresponds to the largest 10% of the alluvium particle size range and of at least 8 or 10 cm
- Riprap bottom slab to mechanically block alluvium (it is not a weir, no resulting head loss in the event of morphologic floods)
- ✓ Thickness of the mattress : 30 50 cm

Material supply sources :

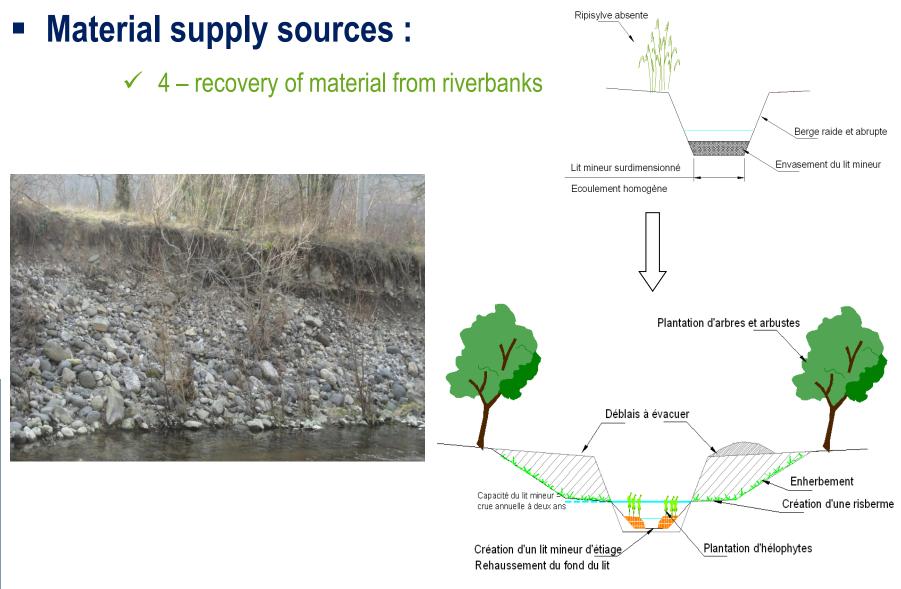
12

✓ 1 – alluvial deposits

Material supply sources :

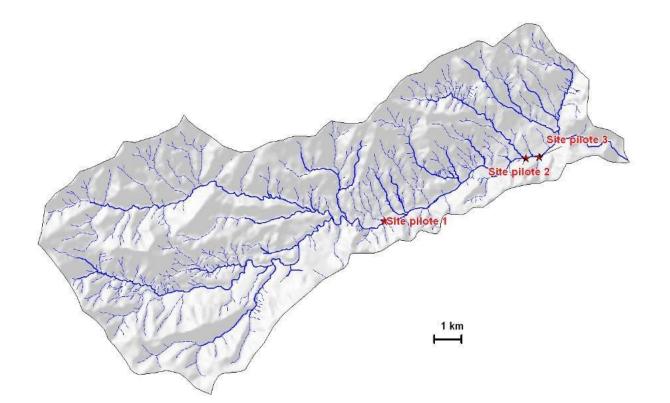
✓ 2 – extraction by the Compagnie Nationale du Rhône in the area influenced by the Pouzin Dam

Material supply sources :


14

✓ 3 – large quantity of material behind the high weirs (weirs in poor conditions, not used anymore, with no risk of profile destabilisation)

Artificial riverbed armouring for protection



Managed plan

Proposed managed plan study 3 pilot sites, detailed in the article

Thanks for your attention