

The Effect of Operation of Mosul Dam on Sediment Transport in its Reservoir

Issa ISSA¹, Nadhir AL-ANSARI², Seven KNUTSSON³ ^{1,2,3}Lulea University of Technology, Sweden Moayad KHALEEL⁴ ⁴Mosul University, Mosul, Iraq

I. INTRODUCTION

II. THE STUDY AREA

II. THE STUDY AREA

II. THE STUDY AREA

1. The physical hydraulic model

1. The physical hydraulic model

1. The physical hydraulic model

Figure 2: Schematic diagram of the physical model

1. The physical hydraulic model

2. The Experiments

	Discharge in model (lps)	0.5	1.0	1.5	2.0	
$S = \frac{W}{W}$	Discharge in prototype (m ³ /sec)	500	1000	1500	2000	
	Water level in prototype (MSL)	Bedload at Sec. (1) (g/sec)				
	305	3.848	9.143	13.571	17.22	
	307	3.787	8.695	12.846	16.02	
	309	3.417	7.24	11.636	14.887	
	310	1.987	4.04	8.767	14.33	
	312	0.0009	0.427	0.686	2.502	
	315	0.00009	0.0001	0.0001	0.0007	

IV. RESULTS AND DISCUSSION

1. Impact of water level on the bed-load rate

2.Impact of upstream water discharge on the bed-load rate

ISSA ELIAS ISSA Lulea University of Technology ICSE6-123

IV. RESULTS AND DISCUSSION

	Discharge in model (lps)	0.5	1.0	1.5	2.0	
)0,	Discharge in prototype (m ³ /sec)	500	1000	1500	2000	
	Water level in prototype (MSL)	Percentage bedload deposited % at Sec.1				
	305	0	0	0	0	
	307	1.6	5	5.35	7	
	309	11.2	20.8	14.26	13.6	
	310	48.4	55.8	35.4	16,8	
	312	99.977	95.33	95	85.5	
	315	99.998	99.998	99.999	99.995	

IV. RESULTS AND DISCUSSION

VILLE V. CONCLUSION

- Sediment transport rate is directly related to the water stage.
- The physical model can be used for future prediction of bed-load rate within that area. It can be used as a guide for operation rules.
- The increase of out flow from reservoir without any increase of the inflow from the River Tigris causes an increase in sediment transport rate entering the reservoir.

• Keeping the water level within the reservoir during the flood period as high as possible will reduce the amount of sediment entering the reservoir.