Local Scour by Offset and Propeller Jets

Yee-Meng Chiew, Jian-Hao Hong, Indra Susanto, Nian-Sheng Cheng

6th International Conference on Scour and Erosion 27-31 August 2012 Outline

- Introduction
- Dimensional analysis
- Effect of densimetric Froude
 - number on jet scour
- Effect of offset height on scour
- Initiation of scour
- Conclusions

Ship-propeller jet

Propeller wash induced erosion

One Week Vessel Track at PPT (25 - 31 May, 2011)

Source: Maritime Port Authority of Singapore, MPA

Scour by (a) offset jet: and (b) propeller jet

To investigate the characteristics of a 3-D scour hole in non-cohesive sediment beds due to a submerged horizontal 3-dimensional offset and propeller jet

$$\begin{aligned} \mathbf{Dimensional Analysis} \\ d_{sem}; L_{sem}; W_{sem} &= f(U_o, d_o, d_{50}, y, \rho, g, \rho_s, \mu, h_t) \\ \frac{d_{sem}}{d_o} &= f\left(\frac{U_o}{\sqrt{\Delta\rho} g d_{50}}, \frac{U_o d_o}{\nu}, \frac{y}{d_o}, \frac{h_t}{d_o}\right) \quad \mathbf{F}_o &= U_o/\sqrt{(\Delta\rho/\rho)g d_{50}} \\ \mathbf{R}_{ej} &= U_o d_o/\nu \\ \frac{d_{sem}}{d_o} &= f\left(\mathbf{F}_o, \frac{y}{d_o}\right) \quad \frac{d_{sem}}{d_o} &= f\left(\mathbf{F}_o - \mathbf{F}_{oc}, \frac{y}{d_o}\right) \end{aligned}$$

Range of data collected on scour cause by submerged 3D jets

Investigators	y/d _o	F _o	$d_{\rm sem}/d_{\rm o}$	$L_{ m sem}/d_{ m o}$	$W_{\rm sem}/d_{ m o}$	Remark
Hamill (1987)	1.14	5.55 - 7.73	0.91 – 1.00	—	6.89 – 20.98	propeller jet
Chiew and Lim (1996)	0.50 – 15.75	13.14 – 60.74	0.47 – 12.76	9.88 – 42.20	27.07 – 95.12	circular jet
Karki (2007)	1.00 – 2.00	10.00	2.03 – 2.87	11.28 – 12.85	28.02 – 29.65	square jet
Hong et al. (2012)	0.50 – 1.50	6.08 – 10.69	0.50 – 1.50	2.57 – 6.65	5.62 – 11.26	propeller jet

Effect of y/d_o on scour depth

10

Effect of y/d_o on scour length

$$\frac{L_{sem}}{d_o} = 8.824 \left(\mathbf{F}_o - (4.114 \frac{y}{d_o}) \right)^{0.535} \left(\frac{y}{d_o} \right)^{0.286}, \quad \frac{y}{d_o} \ge 0$$

Effect of y/d_o on scour width

$$\frac{W_{sem}}{d_o} = 3.834 \left(\mathbf{F}_o - (4.114 \frac{y}{d_o}) \right)^{0.585} \left(\frac{y}{d_o} \right)^{0.202}, \quad \frac{y}{d_o} \ge 0.5$$

Initiation of 3-D jet scour

$$\mathbf{F}_{oc} = 4.114 \frac{y}{d_o}, \quad \frac{y}{d_o} \ge 0.5$$

Conclusions 1. The offset height ratio, y/d_{o} and densimetric Froude number, F. affects both offset and propeller jets 2. The 3-D wall jet equations proposed by Chiew and Lim (1996) form the upper limits for scour induced by both types of jets

Conclusions

- 3. The variation between the scour length, width and offset height is non-linear
- 4. Eq. 11 (Fig. 9) in the paper may be used to determine the critical condition for the initiation of scour

$$\mathbf{F}_o = (4.114 \frac{y}{d_o})$$

Questions & Comments

16