Scour Development Around Offshore Wind Turbine Foundation: Field Measurement & Analysis

Figen H. Dixen, Jan Pedersen, Jesper Fris Dahl DONG Energy, Wind Power

Martin Dixen

DHI, Ports and Offshore Technology

Outline of Presentation

- Motivation
- Site location
- Monitoring set-up
- Environmental conditions
- Measurment results
- Mathematical model
- Comparison of the model with field data
- Conclusions

MOTIVATION

- To investigate the spatial and temporal variability of scouring
- Site specific validation of how much variation in scour depth can be expected
- Compared with the results of mathematical model to see how well that model captured the variation.

GUNFLEET SANDS 1 & 2

Measurement setup

Environmental conditions

- Wind Turbine Foundation
 - ☐ Pile diameter: 4.7 m
- Soil Properties
 - Non-cohesive
 - Median grain diameter 0.2 mm
- Environmental Condition
 - For the observation period:
 - □ Water level =11.4 MSL
 - Wave conditions Hs_{max}=2.6 m Tp=8.3 s
 - \square Uc_{max} = 1.1 m/s

Measured scour depths

Mathematical model

Discretisation has been realized in the following way

$$S(t) = S_e(1 - \exp\left(\frac{t}{T}\right)) \quad \text{Whitehouse, 1998}$$
$$S_i = S_{e,i} + (S_{i-1} - S_{e,i}) \exp\left(\frac{dt}{T}\right)$$

Where the equilibrium scour depth of each time step $S_{e,i}$, is taken as the S_e corresponding to the environmental condition given in that particular time step.

Input data:

Time series of water level, wave and current conditions

Calculation of:

Bed shear stress and Shields parameter

Determine the equilibrium scour depth, Se

Calculation of Time scale, T: Sumer & Fredsøe, 2002

$$T = \frac{D^2}{(g(s-1)d_{50}^3)^{\frac{1}{2}}} \, T^*$$

Current Wave
$$T^* = \frac{1}{2000} \frac{\delta}{D} \; \theta^{-2.2} \qquad T^* = 10^{-6} \left(\frac{\mathit{KC}}{\theta}\right)^3 \qquad T^* = T_c^* U_\mathit{CW} + T_w^* \left(1 - U_\mathit{CW}\right)$$

Calculation of a new scour depth for the given time step

$$S_i = S_{e,i} + (S_{i-1} - S_{e,i}) \exp\left(\frac{dt}{T}\right)$$

Next time step i+1

Comparison

Tuned model

Conclusions

- The maximum depth of scour observed during the measurement period is S/D=1.7.
- Scour depth increased despite of wave action and tidal reversal during the 6 months of measurement period.
- Assuming the backfilling rate as 10 times the scouring rate, the time development of scour has been predicted reasonably by using a relative simple mathematical model.

Thank you

Figen Dixen figdi@dongenergy.dk

