

Erosion at transitions in landward slopes of dikes due to wave overtopping

Henk Verheij (Deltares)

Co-authors: Gijs Hoffmans, Bianca Hardeman, Maurice Paulissen

August, 2012

Wave overtopping test

- Erosion of the grass cover on the slope;
- Erosion at transitions from slope to a horizontal berm or at the toe;
- Erosion related to non-water retaining structures such as a concrete staircase in the slope, fences, trees and poles.

Scour at transitions and obstacles

Scour at transitions and obstacles

Grass cover

Approach at transitions

Deltares

- Theoretical approach: α_m from jet theory
- Practical approach: α_m from overtopping tests

Theory: jet scour approach

Theory: jet scour approach

2D-H
$$z_{m,e} = z_{2H} = c_{2H} \sqrt{\frac{qU}{g}}$$
 with $c_{2H} = 20(D_{90^*})^{-\frac{1}{2}}$
2D-V $z_{m,e} + h_t = c_{2\nu} \sqrt{\frac{qU\sin\theta}{g}}$ with $c_{2\nu} = \frac{23}{\left(U_c \left(\Delta/(\nu g)\right)^{1/3}\right)^{1/2}}$

$$\alpha_M = \sqrt{\frac{z_{2V}}{z_{2H}}}$$

$$\alpha_{M} = \sqrt{\frac{c_{2V}}{c_{2H}}} \sqrt{\sin\beta}$$

$$\alpha_m = 1.2$$

Deltares

Results experimental approach

Test	Characterisation	Quality of	Observed	Predicted
location	of transition	grass cover	scour	scour
		and soil		
Kattendijke	Minestone road	Good grass	1.0m	0.7 to 1.3m
	on a sand bed	on clay, but		$(U_{c} = 2 \text{ to } 4 \text{ m/s})$
		many mole		
		holes		
Afsluitdijk	Brick road	Average	0.3m	0.3 to 0.5m
		grass on good		$(U_c = 6.3 \text{ m/s})$
		clay		
Vecht	Road consisting	Good grass	0.5m - 1.0m	0.6 to 0.8m
	of concrete blocks	on sand		$(U_{c} = 4 m/s)$

conclusions

Transition:

- Theoretical approach: $\alpha_M = 1.2$
- Practical approach: $\alpha_M = 1.05$ to 1.21

Afsluitdijk: Initial damage slope D = $2878 \text{ m}^2/\text{s}^2$ initial damage toe D = $1808 \text{ m}^2/\text{s}^2$

St Philipsland: Initial damage slope D = $1855 \text{ m}^2/\text{s}^2$ Initial damage toe D = $990 \text{ m}^2/\text{s}^2$

•Tree: amplification factor α_m is about 1.2.

Deltares

Thank you for your attention

More information

Email: <u>Henk.Verheij@deltares.nl</u>

