Erosion Resistant Construction of Overflow Sections by means of Geosynthetic Concrete Mattresses

Markus Wilke¹
Benjamin Krueger¹
Markus Schuell²
Peter Tschernutter²

¹ HUESKER Synthetic GmbH

² Technical University Vienna

What are concrete mattresses?

"Geotextile lost formwork"

System explanation

Installation process

28.09.2012

System explanation

Overflow section after completion of concreting

After greening and two vegetation periods

2010

Experimental studies at the Technical University Vienna with two types of concrete mattresses

- Recently concrete mattresses are not mentioned in literature as revetment for overflow sections → Approval of applicability
- Verification/check of the maximum permissible flow velocities for concrete mattresses given in recent literature

Filterpoint (FP) mat

Crib mat

Experimental set-up

- Physical model with the scale of 1:4
- Froude's model law
- Slope inclination 1:2,5
- Specific discharge 0,5...2,5 m³/(s*m)

Location of the measuring points

- Flow velocity
- **Water depths**

q	Duration [h]		
[m³//c*m\]	Filterpoint-	Crib-	
[m³/(s*m)]	mat	mat	
0.50	10	14	
1.00	14	15	
1.50	11	15	
2.00	17	72	
2.25	0.5	0.5	
2.50	0.5	0.5	

Overflow tests at the TU Vienna 2010

$$q = 0.25 \text{ m}^3/(\text{s*m})$$

$$q = 2,50 \text{ m}^3/(\text{s*m})$$

	Specific discharge q	Measured maximal flow velocity					
Type of	[m³/(s*m)]	[m/s]					
mat		Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
FP	0.50	1.30	2.80	3.20	5.80	5.66	5.60
	1.00	1.70	3.64	4.32	6.80	7.80	7.80
	2.00	2.20	4.20	4.88	7.26	9.16	9.50
Crib	0.50	1.45	3.16	4.30	6.44	6.00	6.68
	1.00	1.84	3.62	4.52	6.44	7.58	8 14
	2.00	2.30	4.16	5.04	7.36	8.96	10.50

Summary of the test results

- Structural design of the overflow section is essential
 - → connection to the dam crest
 - → stilling basin/toe design
 - → lateral integration into the dam/structure
 - → sufficient drainage layer below the concrete mattress
 - → stable subsoil (well compacted)
- No indication for a failure neither for the Crib nor for the FP mat
 - → for great discharges (q=2,0m³/(s*m))
 - \rightarrow for a steep slope (1:2,5)
 - → for hydraulic loads over a long period of time (72 h)
 - → for higher hydraulic loads over a short period of time (q=2,25...2,5m³/(s*m))

Summary

Revetment type	Max. slope [1:n]	q _{max} [m³/(s*m)]	
Pitched stone ¹⁾	6	≤ 1.0	
Rip-rap ¹⁾	4	≤ 1.0	
Geosynthetic gabions ¹⁾	4	≤ 1.0	
Mastix asphalt1)	6	≤ 1.0	
Grass paver ¹⁾	6	≤ 1.0	
Soil solidification ¹⁾	4	≤ 1.0	
Filterpoint or Crib mat ²⁾	2.5	> 2.0	

¹⁾ According to [LfU BW - Überströmbare Dämme und Deichscharten]

Comparison of conventional revetment systems concerning discharge capacity and maximum permissible slope

²⁾ Derived from the model tests at the TU Wien

Conclusion

Advantages of the concrete mattress system

- **Very high resistance to increased hydraulic loads/discharges**
 - (→ greater in comparison to conventional systems)
- Optimization of the dam cubature
 - (→ steeper slopes are permissible)
- Reduced layer thickness
- Very economical system
- With adequate preparation great daily installation rates
 (→ up to 1.500 m²/d)
- Subsequent protection of overflow sections is possible
 - (→ no change of the main dam body required)
- Coherent revetment
- Very pleasant appearance/integration into the landscape due to subsequent grass cover

