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v  Focus on the percolation of a porous media with a 
suspension 

v  Infiltration (phase transition of single constituents) 
varies hydraulic properties of the considered 
domain in space and time 

v  Capturing rearrangement effects, i.e. formation of 
an internal-, external filter cake, clogging 

v  Four-phase continuum model for describing 
infiltration problems 

v  Main application: backfilling of the annular gap 
with grouting mortar in the field of mechanized 
tunneling 

Motivation - Infiltration 
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p1  
 
 
 
 
 
 
 
 
 

v  Non permeable heterogeneities initialize significant change in the 
permeability of the volume 

Ø  Formation of a filter cake 
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Motivation - Infiltration 
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Framework 
v  Superimposed continua (Truesdell [1966]) 
v  Mixture theory extended by concepts of volume fractions  

(Bowen [1980,1982], de Boer [2000], Ehlers [2002], Steeb 
[2008], Coussy [2005]) 

Model assumptions 

v  Fully saturated mixture 

v  Material incompressible constituents 

 
  

n↵ :=
dv↵

dv
,

X

↵

n↵ = 1, 8↵ 2 {sn, sa, f, a}

⇢↵R =

dm↵

dv↵
= const and ⇢↵ =

dm↵

dv
= n↵ ⇢↵R

Hydraulic Multiscale Model 
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ns = nsa + nsn

n↵ = {nsa, nsn, na, nf}

n↵ = {ns, nl} nl = na + nf

Reformulation in  

c =
na

�
, � = nf + na

a =
nsa

ns
, ns = nsn + nsa = 1� �

{�, c, a}

Hydraulic Multiscale Model 
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Viscosity of a dilute suspension 

(Einstein [1906]) 

 

 

IBVP for Infiltration 

 

 

 

 

IC and BC   

Darcy relation 

 

 

Kozeny-Carman equation 

 

 

 

 

Amount of attached fines 
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v  Rigid skeleton (only hydraulics) 

v  Thermodynamically consistent mass 
exchange 

v  Production term 

        : material parameter 
        : concentration of fluidized fines 
        : filter velocity 

  

n̂a = �n̂sa =: �n̂s

n̂a / |q|

n̂a = �� c |q|

c

q

�

Constitutive equation for mass exchange 
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v  Evaluation of the mass 
exchange term 

  
 
         : most general  
           expression 
 
         : infiltrated fraction in 
           one time step 

Ø  Determination of CSD in 
each time step and 
material point necessary 
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Characterization of the pore structure 



9 A. Schaufler | Mechanik - Kontinuumsmechanik 

v  Starting with the GSD, the CSD can be 
determined by geometrical considerations 

v  Comparing the probability of occurrence of a 
fluidized particle together with a certain pore 
configuration,    can be determined 

v  Assumption for critical ratio         is necessary 

Ø  Validation by experiments  

v  For non uniform packing a    parameter for each 
fraction has to be evaluated  

 

D/d



Visualization of preferential flow paths 
and pore space in a porous media 



Determination of the CSD 

E.g. Indraratna, B. & Radampola [2002], 
Witt, K.J. [1986] 
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v  Continuous infiltration process in the left part  

v  No significant change in porosity in the right part  
Ø  Transport of the suspension through the pore space 

2 PAMM header will be provided by the publisher
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Fig. 1 Initial and boundary conditions for the IBVP.
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Fig. 2 Contour plot describing the evolution of porosity in space and
time in the domain.

3 Discussion

Using the IBVP (Fig. 1), described in the last section, a 1-dim infiltration problem was calculated. A (physically 1-dim)
domain with the aspect ratio L/l = 20 was considered numerically. On the left edge, a concentration of fines of c̄1 = 0.1 and
a pressure p̄1 = 6.38 kPa were applied. On the right edge, a free boundary was simulated, which corresponds to a constant
pressure p̄0 = 0kPa. Furthermore, the concentrations of fines were set to c01 = c02 = 0.01. In the left part of the domain
a porosity �01 = 0.32 and in the right part �02 = 0.45 were applied. Accordingly, following the Kozeny-Carman equation,
an initial permeability ks01 = 8.58 · 10�10 m2 in the left part and ks02 = 3.65 · 10�9 m2 in the right part of the domain were
enforced. To avoid a jump in the porosity distribution a step function between the different porosity values was created.

In Fig. 2, the results for the porosity distribution in space and time are plotted. In the left part a continuous infiltration
process takes place, leading to a steady decrease of the porosity. Due to the fact that the number of fluidized particles decreases
through infiltration by attachment of particles to the solid skeleton, the maximum change of porosity takes place in the spatial
position where the highest concentration of fines is located.

From the left edge to the middle of the domain the amount of fluidized particles decreases and thus also the change of the
porosity. Behind the transition zone where the two porosities are adapted to each other by a step function, the porosity remains
nearly constant in the right area of the domain. On closer analysis, a decrease in porosity can be determined. However, the
change of the porosity is of smaller magnitude than in the left area of the domain. The reason for this approximately constant
porosity distribution in the right part of the domain is that, due to the lower initial porosity in the left area, the major part of
the particles are already attached to the solid skeleton in the left part of the domain. The particles, which are not blocked by
the area with lower initial porosity, can pass the area with the porosity �01 without infiltration.

4 Conclusion

A flow of a suspension through a porous medium was described by evaluation of the partial mass balances as also the mass of
the mixture. To capture the infiltration process of the fluidized particles to the solid skeleton a mass production term n̂a was
added to take phase transition into account. A 1-dim numerical example was presented, which leads to a better understanding
of clogging phenomena during infiltration processes, e.g. the formation of a filter cake.

Acknowledgements Financial support was provided by the German Science Foundation (DFG) in the framework of project B4 of the
Collaborative Research Center SFB 837. This support is gratefully acknowledged.
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cf. Schaufler et al. [2012] 
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v  Formulation set of coupled/nonlinear PDE’s 

describing infiltration processes 

v  Implementation with coupled finite elements  

 

v  IBVP was extended by a thermodynamically 

consistent production term  

v  Contains one material parameter 

v  Strong interaction between micro- and macro 

scale 

v  Consideration of GSD during calculation  

Conclusion 
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Literature 
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thank you!  
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