Feedback from reservoir sedimentation on the flow pattern in rectangular reservoirs

Erica CAMNASIO, Sebastien ERPICUM, Enrico ORSI, Michel PIROTTON, Anton J. SCHLEISS, Benjamin DEWALS

Speaker: Benjamin DEWALS
HECE – Hydraulics in Environmental and Civil Engineering
University of Liege
How does the location of inlet and outlet channels affect flow and sedimentation in rectangular reservoirs?

- Influence on...
 - the velocity field?
 - the trapping efficiency?
 - the location of deposits?
Does it matter?
It does, at least from two different perspectives

Rectangular shallow reservoirs are

- **idealized** configurations, providing a better insight into individual processes
- **common** structures in hydraulic engineering and urban drainage
Despite the simple geometry, complex flow fields develop and strongly affect sediment transport and deposition.

"Short" reservoirs
S0 pattern

Intermediate length
A1 pattern

"Long" reservoirs
A2 pattern

Dewals et al. (2008) in Environmental Fluid Mechanics
The typology of flow patterns developing as a function of the reservoir geometry highlights bi-stable flow fields.

How does the location of inlet and outlet channels affect flow and sedimentation in rectangular reservoirs?

Length $L = 4.5$ m
Width $B = 4$ m
Depth = 0.2 m
Discharge = 7 l/s

Influence on ...
- the velocity field?
- the trapping efficiency?
- the location of deposits?

(a) C-C
(b) L-L
(c) L-R
(d) C-R

Measure velocity field
Measure deposits thickness
+ numerical simulations
Flow velocity was measured throughout the reservoir.

Square grid formed by eight UVP transducers.

\[V_{nd} = \frac{V}{V_{res}} \]

\[V = \text{velocity} \]

\[V_{res} = \text{plug flow velocity} \]
A simple turbulence closure was first tested: algebraic model based on Elder formula ($v_t = \alpha h u_\ast$)

<table>
<thead>
<tr>
<th>Without sediments</th>
<th>With sediments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{nd} = V / V_{res}$</td>
<td>$V_{nd} = V / V_{res}$</td>
</tr>
<tr>
<td>$V_{nd} = 16$</td>
<td>$V_{nd} = 16$</td>
</tr>
<tr>
<td>$V_{nd} = 13$</td>
<td>$V_{nd} = 13$</td>
</tr>
<tr>
<td>$V_{nd} = 10$</td>
<td>$V_{nd} = 10$</td>
</tr>
<tr>
<td>$V_{nd} = 7$</td>
<td>$V_{nd} = 7$</td>
</tr>
<tr>
<td>$V_{nd} = 4$</td>
<td>$V_{nd} = 4$</td>
</tr>
<tr>
<td>$V_{nd} = 1$</td>
<td>$V_{nd} = 1$</td>
</tr>
</tbody>
</table>

$\alpha = 2.0$

$\alpha = 1.0$
As bottom topography varies according to measurements, the computed velocity profile changes after 30 to 60 min.

Forced evolution of the bottom topography [m]
(based on measurements)

Simulated velocity field [m/s]

![Graph showing velocity profile over time](image-url)
Conclusions

Four configurations of inlet and outlet channels locations (on opposite sides of the reservoir) have been tested.

Trapping efficiency does not vary significantly (≈10%)

In one geometric configuration, a **change in the stable flow field** was observed when sediments were supplied.

Numerical simulations based on a two length-scale depth-averaged k-ε model **simulate accurately** the measured velocity fields.

They reproduce the change of flow pattern as a result of

- sediment deposits
- and increased bottom roughness