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Major Highway Bridge 
Failures in Taiwan 

 Several major highway bridge failures 
occurred in Taiwan in recent years. 

 Most of them were due to the exposure of 
the pier foundation because of scour. 

Kao-Ping Bridge 
Typhoon Bilis, 2000 

July 30, 2009 

Aug. 13, 2009 

Hou-Fong Bridge 
Typhoon Sinlaku, 2008 

Shuang-Yuan Bridge  
Typhoon Morakot, 2009 

Da-Jin Bridge 
Typhoon Morakot, 2009 
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Influence of Scour on the Pier Foundation 
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 Lateral resistance of the pier-soil system will be decreased.  
 Larger flow-induced loads will be applied on the pier 
 To prevent bridge failures, it is important to estimate the 

performance of scoured bridges during flood. 
 

 

lateral
soil 
reaction pile 

skin 
friction

pile end bearing

pi
le

pile cap

pier

axial 
load

flow-induced
lateral load

lateral
soil 
reaction pile 

skin 
friction

pile end bearing

pi
le

pile cap

pier

axial 
load

flow-induced
lateral load

lateral
soil 
reaction

pile 
skin 
friction

pile end bearing

pi
le

pile cap

pier

axial 
load

flow-induced
lateral load

Before scour After scour 
(pile cap exposed)

After scour 
(pile partially exposed)

pile cappile cap

pi
le

reducing the 
stability of 
foundation 

3 



Failure of the Shuang-Yuan Bridge 
during Typhoon Morakot  
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Slope

Elevation

Mileage

Shuang-Yuan Bridge

Kao-Ping River

P1
P16

P1P16

 Main channel of the river shifted toward the right river bank and caused 
the powerful torrent concentrated on section P10~P16. 

 Failure could begin at P10~P16, and resulted in sequential damage that 
propagated to P2. 

 What need to be 
clarified : 
 Failure mode of 

the foundation. 
 Scour depth at 

failure moment. 
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 Unit P10-P13 was chosen as the 
target of interest. 

 SAP2000 was employed to 
establish the soil-structure model 
considering the nonlinearity of 
pile-soil system 
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Analysis Model of Shuang-Yuan Bridge 

 Pile cap: rigid plate.  
 Pile-soil system: 

Winkler beam model  
 Pile: beam elements 
 Soil reactions:        

spring elements 
 Pile exposure:   

removing the soil springs. 
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 Nonlinearity of the pile: the distributed hinge model.  
 Nonlinearity of soil: Nonlinear p-y curves.  
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Modeling the nonlinearity of pile-soil system 
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(Japan Road Association, 1996)  

(Architectural Institute of Japan, 1988)  
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Soil Profile 
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Simplified Soil Profile  

 Soil properties wer estimated mainly 
according to the soil profile (2010) 

  Nonlinear p-y curves were obtained based on 
the SPT-N values 

Soil Profile (2010) 
30m from the bridge to the upper river side  
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Scour Depth 

 Scour depth @ 30m from the 
bridge to the upper river side 
as the lower bound (LB) 

 Scour depth up to 30m 
around P4~P12 and 15~20m 
@ P13 (by ERT) 

  

Soil Profile (2010) 
30m from the bridge to the upper river side  

 7 scour states 
are specified 

 LB:                    
scour depth is 
16 m at P10 

 UB:                    
scour depth is 
30 m at P10 
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Flow Induced Load and Analysis Processes 

2)(5.52 avgavg VKP =
where  
Pavg (kgf/m2) is the average stream pressure; 
Vavg (m/s) is the average velocity of water ; 
K is a constant based on the shape of the pier:   
    for a circular piers, K=0.7;  
Pmax  = 2Pavg  → a triangular distribution  

Pmax

“Standards Specification for Highway Bridges” 
(AASHTO, 2002): 

Analysis Processes 
 Self weight equilibrium analysis  
 Displacement-control nonlinear quasi-

static analysis under flow-induced load 
 Performed  at each specified scour depth 
 Total lateral load v.s. lateral displacement 

→ flood resistant capacity curve  9 
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Flood Resistant Capacity Curves 
at Various Scour State 

 Each point on capacity curve represents a specific Vavg . 
 Foundation scour reduces the stiffness and strength of bridges. 
  Scour state I

Scour state II

Scour state III

Scour state IV

Scour state V
Scour state VI

Scour state VII

 v=5m/s

 v=4m/s

 v=3m/s

 v=2m/s

 v=1m/s

 v=3.5m/s

 Vavg  = 3.5 m/s during 
flood by hydraulic 
analysis. 

 At scour state II (scour 
depth=18m @P10) , the 
structure is close to the 
yield state  

 At scour state IV (scour 
depth=22.5m @P10) , the 
structure is close to the 
complete failure state 

→ scour depth could had been 
beyond 22.5m @ P10 
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Development of Plastic during Analysis 

a) Original piles of P10 yield at segments near the river bed. 
b) The yield zone of P10 spread upward and downward. Meanwhile, 

original piles of P11 also yield at segments near the river bed. 
c) Piles of P10 yield at segments below the pile cap. 
d) Yield zone below the pile cap of P10 spread downward, and the 

pile segments below the pile cap of P11 yield well. 
e) The pile segments near the river bed of P10 completely fail. 
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 Procedure for the evaluation on the flood resistant capacity 
of scoured bridges with pile foundations were proposed. 

 The failure of the Shuang-Yuan Bridge in Taiwan in 2009 
was chosen as a case study.  

 An FE model was generated for a nonlinear quasi-static 
analysis under the action of flow-induced loads. 

 The exposed foundations of unit P10-P13 would reach an 
initial damage state if local scour depth was more than 18m. 

 If the local scour depth was above 22.5m, the unit P10-P13 
would attain a complete failure state. 
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Summaries 
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Thanks for Your Attention 
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