Evolution of Beach Morphodynamics in light of Sediment Budget Assessment with the Coast of Joetsu, Niigata, Japan

Ryoukei AZUMA¹, Tetsuya HIRAISHI¹, Hideo SEKIGUCHI²

1. DPRI, Kyoto University
2. Osaka City University
1. Introduction

2. Features of Joetsu Coast

3. Long-term evolutions of shoreline and subaerial beach area

4. High-resolution bathymetry using multibeam and side-looking echo sounding

5. Features of seabed topographical evolution

6. Sediment budget analysis in a littoral cell

7. Conclusions
1. Introduction

In the past thirty years, flood-control and soil conservation works have been performed.

Fluvial area \rightarrow Coastal area

Imbalance between incoming and outgoing fluxes of sediment in a littoral dispersal system

Coastal erosion has become a serious issue. In fact, it has recently undergone the loss of aerial beach area at a rate of approximately 160 ha per year (Tanaka et al., 1993).

This study aims to provide a clearer picture of seabed topographical evolution in the typical example of Joetsu Coast, in terms of high-resolution bathymetry.
2. Features of Joetsu Coast

The Joetsu Coast is featured by:
- 28km-long
- Sheltered by Noto peninsula and Sado Island
- Prevalent wave directions are normal to shoreline
- Significant wave height $H_{1/3}=9.24m$ was recorded on (20/12/2003)

The fluvial supply is principally due to the Seki River

The factors responsible may include:
- Development of extensive breakwater system
- Deployment of wave-dissipative or wave-defense structures
3. Long-term evolutions of shoreline and subaerial beach area

Based on the geographical maps on a scale of 1:25000

Fig. 02 Evolution of shoreline to the east of the Naoetsu Port in the period from 1914 to 2002

- In the nearly 90 year-period, the shoreline retreated over the 9.6km-long section.

- Particularly, in section Nos.32, 43 and 44, the recession of the shoreline was significant, amounting to 100 meters or so.
3. Long-term evolutions of shoreline and subaerial beach area

- **Before 1960**
 - Natural beach

- **After 1960**
 - Naoetsu Port has been developed rapidly
 - Shoreline had started to retreat

- **In the period 1998-2005**, substantial lengths of groins and shore-protection works were deployed.
 - Shoreline was fixed by structural measures (no sand beach left in most of the coastline)

The question now arises as to **how the seabed topography has evolved** under these circumstances
4. High-resolution bathymetry using multibeam and side-looking echo sounding

Acoustic imagery + Bathymetry data

The swath width of C3D is wider than traditional multibeam bathymetry

Topography in shallower depth area can measure effectively

Fig.04 Multi-angle swath bathymetry system (C3D, Teledyne BENTHOS) mounted on broadside of boat

Fig.05 A comparison with C3D (present method) and traditional multibeam bathymetry
4. High-resolution bathymetry using multibeam and side-looking echo sounding

Surveyed area extends offshore to a depth of 10m.

Fig. 06 Measurement area of high-resolution bathymetry

The bathymetry data was a cloud of points in three-dimensional coordinate space; with a horizontal grid spacing of 2m.
Photo 1: Serious beach erosion associated with severe winter storm from Jan. 27 to 30, 1989 (adapted from Hirano (2008)).

Photo 2: Affected seawall and slope due to severe winter storm (Photograph taken on Apr. 1, 2002: adapted from Hirano (2008)).
A large-scale erosional signature in the area offshore of the artificial reefs.

A semi-circular large bar. Crest line of bar corresponded to the 7m depth. Trough of the bar was 9m depth or more.

This topographical feature was existed deeper than closure depth of 8m in this Joetsu Coast.

Fig. 07 Bathymetric chart in terms of multibeam and side-looking echo sounding; 0.5m as to contour interval.

Local scouring in the gaps between the artificial reefs.
Using the assumed closure depth 8m, the rate of equivalent shoreline retreat was equal to 3m per year.

This order of erosion would bring about serious consequences, if no provisions for shore protection were operational.
The principal conclusions of this study drawn are as follows:

- **The 9.6km-long section** of the Joetsu Coast underwent the **significant retreat of shoreline**, but that the shoreline location **thereafter** has essentially **stayed fixed by deployment of the extensive countermeasures**.

- The sediment budget analysis has permitted the **recent decadal loss of sediment** to be evaluated at $50 \times 10^4 \text{m}^3$.

- The marked local scouring in the gaps between the artificial reefs implies the **occurrence of strong water motions through them during storms**. However, there were no apparent signatures of accretion behind the artificial reefs, which could otherwise add to the safety of the shoreline structures such as the vertical concrete seawall.
6. Sediment budget analysis in a littoral cell

Fig. 10 Sediment budget analysis by means of a box model; (a) arrangement of subboxes and (b) alongshore distribution of sediment volumetric changes.

The sediment volume was calculated above reference plane of the elevation of T.P. -12m.
The topographical change of seabed was occurred in a deeper area than closure depth of 8m. What has occurred in an area that is deeper than 10m?

We plan to investigate the morphodynamics of seabed in an area from the 8m to 20m-depth, based on the results of new bathymetry campaign and vibro-core sampling performed on July 2009.

We want to reexamine the meaning of the closure depth of topographical change.
5. Features of seabed topographical evolution

Fig. 08 Comparison of the beach cross-section profiles between the high-resolution bathymetry results (2008) and traditional bathymetry results (1998)

(a): through the site of the gas exploitation pier (demolished in 1986) of the Teikoku Oil Co., Ltd.

(b): through the large semi-circular bar (Fig. 07)

(c): through the artificial reef of DS-1
(d): through the artificial reef of DS-1

Sand bar was not formed at the offshore area of artificial reef

(e): through the artificial reef of KF-1

(f): through a space between the artificial reefs of KF-2 and -3

(g): through a space between the groin (G) and artificial reef of KF-2

Fig.09 Comparison of the beach cross-section profiles between the high-resolution bathymetry results(2008) and traditional bathymetry results(1998)
5. 高解像度海底地形計測

図15 高解像度海底地形音響画像（全体図）
5. 高解像度海底地形計測

図16 京大旧観測桟橋周辺の海底地形音響画像（拡大図）

大規模な弓状堆積地形が確認できる。
図17 人工リーフ（DS-1, KF-1）周辺の海底地形音響画像（拡大図）

アンカー等を下ろしたためにできた地形？

人工リーフのブロックの形が確認できる。
5. 高解像度海底地形計測

図18 人工リーフ(KF-3, KF-2)周辺の海底地形音響画像（拡大図）