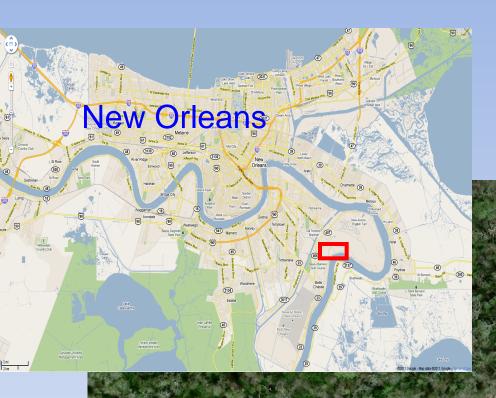
Field Jet Erosion Tests of Treated Clay Levee Embankments

Bryant A. Robbins, Johannes L. Wibowo

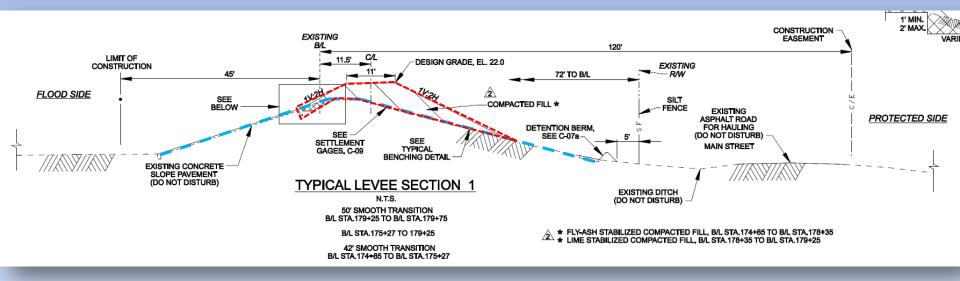
USACE Engineering Research and Development Center

August 27-31, 2012



Objective

Discuss the results of field Jet Erosion Tests (JET) of lime and fly-ash treated clay


Project Location

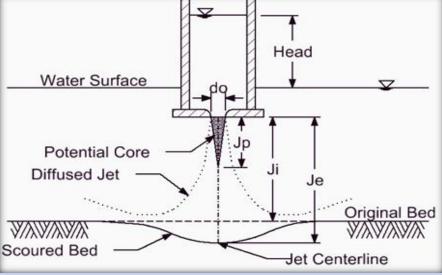
ICSE-6 2012

©2011 Google - Imagery ©2011 GeoEve, U.S. Geological Survey, Map data ©2011 Google - Terms of Us

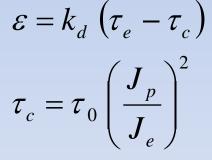
Demonstration Levee Typical Section

•Fly ash and lime treatment alternatives

- Provide more resilient section
- No additional foot print

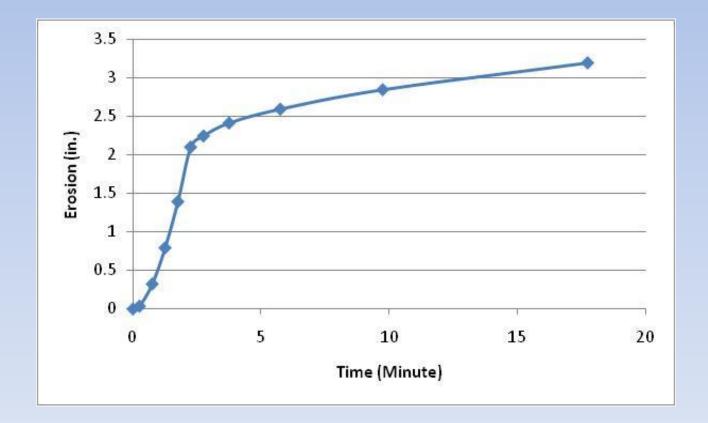


Demonstration Levee Material and JET Locations

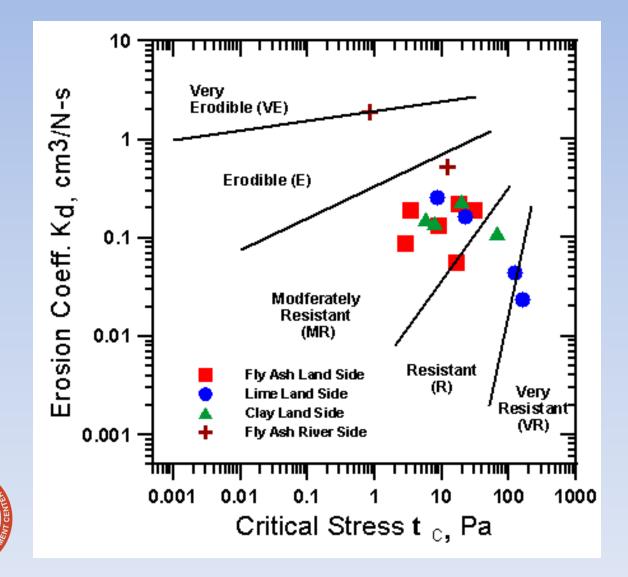

Levee Section	Material	Jet Erosion Test Number	Number of Passes			
Original Clay Levee	High Plasticity Clay	Test 1-4				
Fly-Ash Treated Clay (120 M)	Bonne Carre Clay, 5% Fly-Ash, 5% Bed-Ash	Test 5-8 and 13-16	2			
Lime Treated Clay (120 M)	Bonnet Carre Clay, 8% Lime	Test 9-12	6			
ICSE-6 2012						


Schematic of Jet Erosion Process

Hanson & Cook, 1997

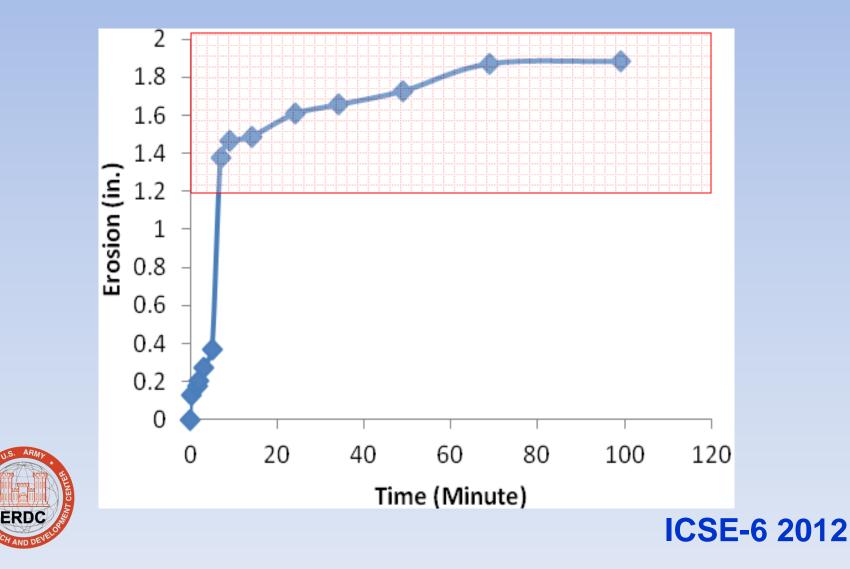


Jet Test Apparatus



Jet Erosion Test Data

Summary of Field JET Results


ERDC

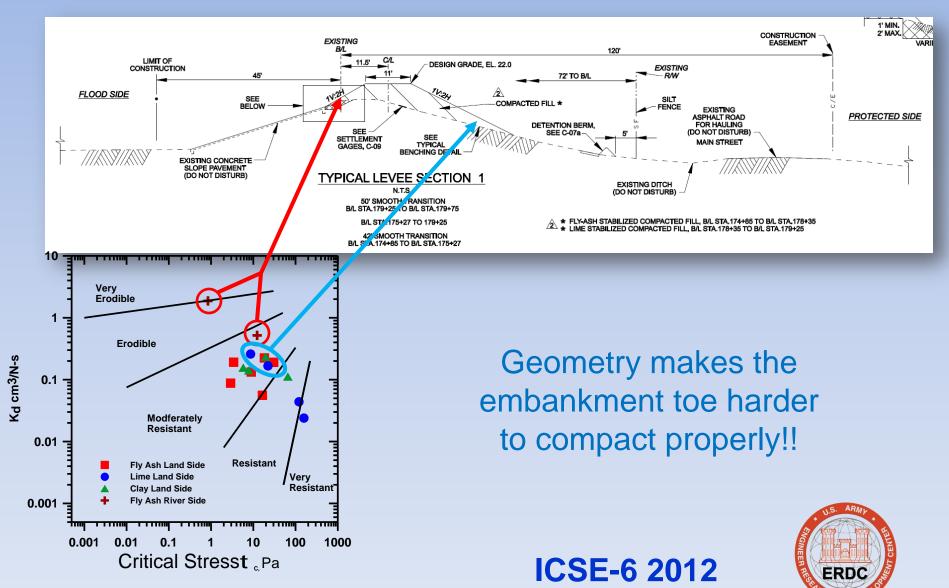
TTI Erosion Function Apparatus Results

Material	EROSION PARAMETERS	MEASURED VALUES					ERODI- BILITY	
Bonnet	Shear Stress (Pa)	0.92	1.09	4.02	6.39	14.0	22.6	Medium
Carrie (BC) Clay	Erosion Rate (mm/hr)	0.00	0.00	1.02	3.72	15.1	29.2	Wedum
10% Fly Ash Treated BC	Shear Stress (Pa)	26.0	42.0	58.2	86.7	110.1	129.2	Very
Clay	Erosion Rate (mm/hr)	0.00	0.00	0.00	0.00	0.00	<0.1	Low
6% Lime Treated BC Clay	Shear Stress (Pa)	3.31	9.21	21.7	49.2	76.3	90.2	Very Low
	Erosion Rate (mm/hr)	0.00	0.00	0.00	0.00	<0.5	<0.2	

Heterogeneous Layers (fly ash treated clay)

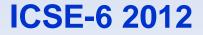
Construction

Fly ash treated clay

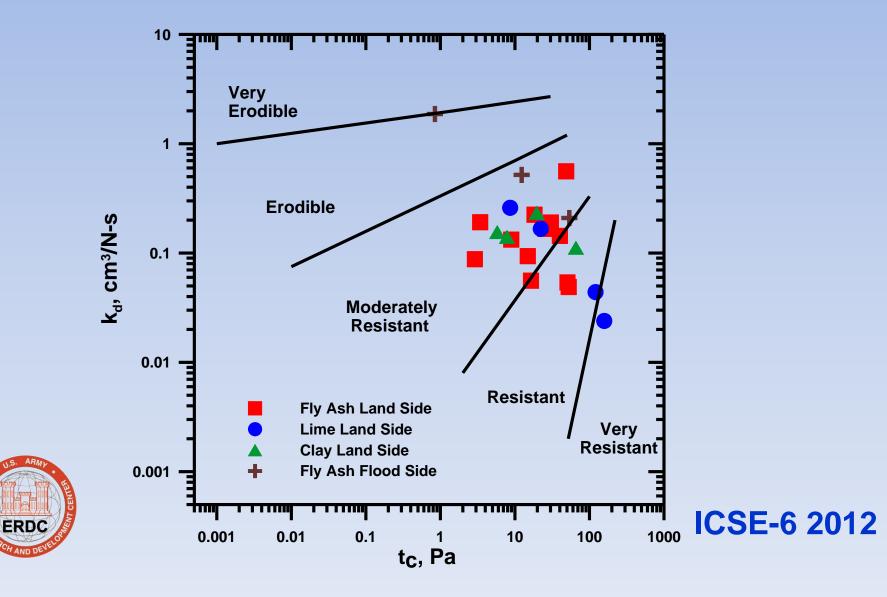

- After mixing clay with 5 % fly ash and 5 % bed ash, material sit for about two – three week
- Two bulldozer passes

Lime treated clay

- After mixing clay with 8 % lime, material sit for about two – three week
- Six bulldozer passes
- Field JET Tests
- Twelve weeks after construction
- Laboratory Test by Texas Transportation Institute
- Compaction right away after mixing



Analysis of Variation



Jet Tests Erosion Tests

		Erosion Parameters			Secondary Parameters		
Test #	Location	ka (cm ³ /N-s)	τ _c (Pa)	Category	ka (cm ³ /N-s)	τ _c (Pa)	Category
1	Clay Levee, LS	0.156	5.762	MR			5
2	Clay Levee, LS	0.141	7.796	MR			
3	Clay Levee, LS	0.112	65.536	R			
4	Clay Levee, LS	0.234	19.503	MR			
5	Clay w/Fly ash, LS	0.088	2.899	MR			
6	Clay w/Fly ash, LS	0.056	16.371	R	0.054	50.433	R
7	Clay w/Fly ash, LS	0.225	18.229	MR	0.167	25.46	MR-R
8	Clay w/Fly ash, LS	0.191	30.225	MR	0.144	39.878	R
9	Clay w/Lime, LS	0.167	22.247	MR			S
10	Clay w/Lime, LS	0.260	8.592	MR			
11	Clay w/Lime, LS	0.024	157.251	VR			
12	Clay w/Lime, LS	0.094	120.201	VR			
13	Clay w/Fly ash, RS	1.875	0.841	Е	11112310		
14	Clay w/Fly ash, RS	0.52	12.272	MR	0.21	53.483	R
15	Clay w/Fly ash, LS	0.133	8.899	MR	0.049	52.48	R
16	Clay w/Fly ash, LS	0.192	3.048	MR	0.094	14.797	MR

Summary of Erodibility Test Results

Conclusions

- Field Jet Erosion tests were conducted to asses the erodibility of lime and fly-ash treated soil and untreated soil
- Both treatment improve the erosion resistance
- Improper construction procedures can reduce erosion resistance
- Reduction resistance was illustrated by significantly higher detachment coefficient measure in the field than in the laboratory

