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Dam Overtopping and Erodibility
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Erodibility Index Method amecG

" Annandale, 1995
" Empirical method based on comparison
between:
= Erosive stream power of impinging jet (SP,)
= Resistive capacity of rock (Pg.,,r min): fUNCtiON  Erosion threshold (rock) as defined by the Erodibility Index

of erodibility index Method (Annandale 1995)
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Eroding Power of Impinging Jet amec5

Potential maximum erosive stream power of jet :

0 = overtopping flow rate
(function of overtopping depth, jet thickness or depth, initial velocity head, dam crest geometry)
H = total head of impinging jet
(function of issuance elevation, impact depth of jet, velocity head)

= jet outer diameter T
(function of crest geometry, jet arch length at impact)

9., = specific weight of water
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Resistive Capacity of Rock ameCj

Erodibility index (K) depends on:

" M, = Intact rock strength parameter
(function of unconfined compressive strength)

" K, = Block size parameter
(function of rock quality / rock joint set number)

" Ky = Interparticle shear strength
parameter

(function of rock joint roughness / joint alternation)

" J. = Relative orientation parameter

(function of relative shape of the block / dip angle /
dip direction in relation to flow angle)




Uncertainties ameCG

Hydrologic — rainfall, runoff, overtopping flow rates
Hydraulic — jet characteristics, air entrapment
Geologic — rock properties, joint characteristics
Stabillity criteria

Reliability = 1- Probability of failure
= function( streampower, erodibility index )

Using average properties ~ risk neutral

Safety margin/conservatism lies in design hydrologic event
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Reliability Evaluation
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Uncertain Failure Criterion amec 3

P(Y) = prob (failure |u)

P, = Op(u)>¥ (u)du
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Rock Data Collection

To Jump,
or not to
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Manual vs LIDAR methods of measuring joint properties

.;0

\ETITE Method
(Brunton Compass) Q ;,-.;:_. ,

-' - ';‘.

. - 4
AL = )



Site location
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Oblique view (looking southeast) of Lake Spaulding amec®

and Dams




amec”
Vertical view of Dam No. 2 spillway, slot, and debris fan




Spaulding Dam No. 2 spillway specifications

amec”

= Constructed in 1916

= Curved (300-foot radius) concrete arch dam

» Crest height = 42 feet

= Crest length = 309 feet

= Crest width = 4 feet

= Nominal crest elevation = 5,016.1 feet (top of parapet)

= Three 14 ft x 20 ft radial gates ogee spillway crest at 4,994.6 feet

= Seven 14 ft x 15 ft radial gates ogee spillway crest at 4,999.6 feet

= Stoplog spillway ogee crest at 5,009.6 feet

= 72 hour October (PMF) = 70,490 cfs inflow and 68,450 cfs outflow

= October PMF = 41.95 inches ((HMR 36) — 45.76 inches (HMR 58/59)
= Maximum October PMF flood water surface elevation = 5,018.5 feet
= Maximum October PMF freeboard = -2.4 feet (overtops 12.9 hours)
= December 1964 flood = 33,000 cfs (estimated at zero freeboard)

= January 1997 Flood of Record (FOR) = 34,200 cfs
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Comparison of manual and LIDAR measured amec®

Joint Set 2 joints

TYPE

+ LIDAR[7]
¢ LiDARavg [1]
+ conv[7]

¢ convavg [1]

Equal Angle
Lower Hemisphere
16 Poles
16 Entries



Poles of primary joint sets in Spaulding Dam No. 2 amec®

spillway

Fisher
Concentrations
% of total per 1.0 % area

Joint Set 3 [opmnd 0.00~ 2.50 %
250~ 5.00 %
500~ 7.50 %

Joint Set 1 and
A JOiNt Set 4 _‘
W (Sheeting Joints) E H 10.00 ~ 12.50 %

- 12.50 ~ 15.00 %

No Bias Correction
Max. Conc. =13.1697%

Lower Hemisphere

232 Poles
80 Entries

7.50 ~10.00 %




Rock Block Stability Evaluation amecG
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Discontinuous Deformation Analysis

Block Theory




Past, Current & Future ameCj
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Past Analysis Current Condition Future Risk




A Holistic and Adaptive Risk-Based Decision Support

Framework For Water Resources Management H?WGCG
Smart Watershed

Data Acquisition, Management, and Analysis
Sensing, streaming, QA/QC, integration, and inventory
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System Updating Forecasting and Prediction

Inverse modeling, parameter Spatial-temporal modeling and
estimation, and prediction conditioning conditional simulations

Risk Evaluation
Reliability / risk analysis

Optimization / Decision Analysis

Scenario evaluation, logic tree, stochastic
optimization, and visualization




Optimization / Decision Analysis —

amec®

Optimization / Decision Analysis

Scenario evaluation, logic tree, stochastic
optimization, and visualization

| Strategic Decision
Maodel
Hydrogeologic | Client ‘ Regulatory
Modeis / Tools | | Objectives | Framework |

Future
Uncertainties

Technical Expen
Knowledge

l Conceptual Site Model I

Decision Analysis Optimization

Real-Time Operations
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