EROSION THRESHOLD OF A WATER IMMERSED GRANULAR BED BY A NORMAL WATER JET

ICSE 2012, Paris, August the 30th

IENCE A DARIS

UNIVERSITE DIERRESMARIE CURIE

FRANCE

EROSION BY JETS

Fig. 1a. Experimental set-up.

Crater evolution as a function of time

U.S. Departement of Agriculture: Hanson *et al.*

- Use in Civil Engineering
- Jet erosion Test on soils

- NASA: Metzger *et al., Journal of Aerospace Engineering* and *Soft condensed matter,* 2009
 - Air jets on grain beds
 - Lift-off/landing of rockets

University of Alberta, Canada: Rajaratnam et *al.*

- Civil Engineering
- Many types of jets on grain beds

EROSION BY VORTEX RINGS

FIG. 1. (a) Schematic showing the system used to generate the vortex rings. The inset shows the slug length L_0 , defined as the depth of fluid ejected from the orifice. (b) Image of an illuminated vortex-ring cross section illustrating how the ring diameter D is defined. The ring shown is fully formed with $L_0/D_0 = 0.9$, D=4.0 cm, and Re=3700.

University of Cambridge, U.K.: Bethke *et al.*, *Physics of Fluids*, 2009 and 2012

Study of the critical conditions for particle resuspension and crater characteristics.

FIG. 7. Sequence of images showing an impact with $d=150 \ \mu\text{m}$ (type B), $\theta=\theta_c=6.2 \ D=5.0 \ \text{cm}, \tau=0.106 \ \text{s}$, and $Re=11\ 800$. Corresponding dimensionless times are included at the top of each frame. The images were taken viewing down onto the bed surface at an angle of approximately 10⁹ to the vertical, illuminated by a light source directed across the layer surface.

FIG. 10. Light attenuation images of craters on a 250 μ m particle layer. The velocity of the vortex rings ($L_s = 70$ mm) was (a) $U \approx 709$ mm/s $\approx 7.3U_r$, (b) $U \approx 518$ mm/s $\approx 5.3U_r$ and (c) $U \approx 280$ mm/s $\approx 2.9U_r$.

EXPERIMENTAL SETUP

- Jet = sheet of 4 mm thickness
- $0,5 \le l \le 35 \text{ cm}$
- Bi-dimensional setup: jet width ≈ tank width

Measurement of the mean jet velocity V_j at erosion threshold, as a function of the distance l

EROSION THRESHOLD

- Increase of V_j with l at threshold
- Non-uniform evolution

EROSION THRESHOLD

$$l = 3,4 \text{ cm}$$

 $V_j = 0,056 \text{ m.s}^{-1}$
Rectilinear laminar jet

l = 5.6 cm $V_j = 0.070 \text{ m.s}^{-1}$ Oscillating jet

l = 13,5 cm $V_j = 0,134 \text{ m.s}^{-1}$ Mixed jet l = 25 cm $V_j = 0,261 \text{ m.s}^{-1}$ Turbulent jet

JET VISUALISATION AT THRESHOLD 1000 Turbulent jet 800 Rectilinear laminar jet 8 $\operatorname{Re}_{j} = \frac{V_{j}b}{v}$ Re_{jc} Mixed jet 10 20 30 40 50 60 70 0 d=250µm l/bOscillating jet

JET VISUALISATION AT THRESHOLD 1000 , 66⁶ 800 Locked regime: 8 the jet sees the confinement. 600 Re_{jc} 8 400 Paris: To BE 200

0

0

10

20

30

l/b

40 50 60

70

d=250µm

PMMH, ESPCI, Schlumberger in

Maurel et al., Physical Review E, 1996

Maurel et *al., Physical Review E,* 1996

EROSION PARAMETERS

INERTIAL REGIME

 $\operatorname{Sh}_{i} = \frac{\rho V_{j}^{2}}{\Delta \rho g d} \qquad \operatorname{Re}_{p} = \frac{V_{j} d}{\nu}$

- Threshold measurements at $l/b \approx 5$
- Constant Sh_i in the inertial regime $Re_p > 1$

CONCLUSIONS AND PERSPECTIVES

- Detailed study of erosion threshold
- Collaboration with LHSV lab (D. Nguyen, F. Levy, J-S. Finck et D. Pham-Van-Bang) on a <u>numerical model</u>.
 - Crater formation above threshold.

INERTIAL REGIME

$$Sh_{i} = \frac{\rho V_{j}^{2}}{\Delta \rho g d} \qquad Re_{s} = \frac{V_{sed} d}{\nu}$$

$$Sed = \sqrt{\frac{3}{2} \frac{\Delta \rho g d}{C_{D} \rho}}$$

$$F_{D} = \frac{24}{Re_{p}} (1 + 0.15Re_{p})^{0.687}$$

$$e_{p} = \frac{V_{j} d}{\nu}$$

Threshold measures at $l/b \approx 5$

Constant Sh_i in the inertial regime $Re_p > 1$

INFLUENCE OF CELL WIDTH

