How to predict the sedimentological impacts of reservoir operations?

E. Valette EDF CIH eric.valette@edf.fr M. Jodeau EDF R&D LNHE magali.jodeau@edf.fr

- ➔ Presentation of the numerical code Courlis
- ➔ The emptying of Tolla Reservoir
- ➔ The flushing of St Egrève reservoir during floods
- Conclusions

Presentation of the numerical code Courlis

One-dimensional numerical model that can simulate cohesive sediment transport in open channels under unsteady flow conditions

- Sediment concentrations throughout a waterway
- Changes in riverbed bathymetry caused by sediment transport

Presentation of the numerical code Courlis

Calculation principles:

- 1D modeling of hydraulics and sediment transport
- 2 separate calculation modules : 1 for hydraulics (MASCARET), 1 for sediment transport
- Sub and super critical regimes, permanent and transient states
- 2D calculation of erosion and deposition in cross-sections
- Krone & Partheniades Formula for deposition and erosion of cohesive sediment; For sand, the transport capacity is calculated with the Engelund Hansen formula
- Description of several layers of sediments

The emptying of Tolla Reservoir

Tolla Reservoir (South Corsica) :

emptying in order to perform works on the dam

- downstream water intake for drinking water of Ajaccio city (53 000 inhabitants) => mitigate water quality degradation downstream during the operation
- not so many option : dilution using tributaries, settling tank, time during the year, speed of lowering and minimal elevation

Use of numerical modeling

to estimate the quantities of eroded sediments

to test different scenarii of emptying

The emptying of Tolla Reservoir

Data available :

- two bathymetries : 1998 and 2009
- sediments samples
- No calibration data

D4 1/10/2009 8' 2' 2' 2' 2'

Schematic description for modeling

- Downstream area : silt
- ②Middle area : sand + thin layer of silt
- ③Upstream area : not modeled

	C (g/l)	sand (%)	Silt parameters					
			T _{ce} (Pa)	M (kgs ⁻¹ m ⁻²)	ws (m/s)	(Pa)		
1	280	0	0.1 - 1	0.01 - 0.02	$2.10^{-3} - 10^{-2}$	0.01 - 0.1		
2	370	19	0.5 - 2	0.01 - 0.02	$2.10^{-3} - 10^{-2}$	0.01 - 0.1		

		Sand parameters					
	C (g/1)	sand (%)	d50 (μm)	<i>ws</i> (m/s)	$(m^{1/3}s^{-1})$		
sand	1400	90	90	7.10^{-3}	75 - 95		

Parametric analysis

Identify the set of realistic parameters that gives max. masse and concentration

The emptying of Tolla Reservoir

emptying scenario

Level variations and output concentrations for different lowering speeds

Emptying calculations (10cm/h) for different upstream discharges.

(St-Egrève Reservoir French Alps) :

- For safety reasons, a freeboard of 1m with respect to the crests of the reservoir embankment must be guaranteed for a flood of 3000 m3/s
- The Isère River's waters are highly loaded with fine sediment
- The St Egrève reservoir has

 \succ a bed on the left bank that continues to silt up

 \succ a channel with a variable section. It is deepened during floods

Use of numerical modelling

to determine the bottom evolution kinetics during floods (evaluate the bottom level at the flood peak)

Calibration and validation

- A lot of measurements for calibration :
 - Discharges, suspended sediment concentrations, water levels
 - several bathymetries before / after floods,
 - sediment samples …

Calibration : 2008 flushing operation

Calibration and validation

A lot of measurements for calibration :

Discharges, suspended sediment concentrations, water levels

Several bathymetries before / after floods,

sediment samples …

Validation : 2010 flushing operation

Study of a flood event with a peak discharge of 3000 m3/s

Calibration and validation

Example : attempt to calibrate/validate with a single layer of sediment

Conclusions

- Courlis is successfully used to model reservoir emptying and flushing :
 - Confirms the necessity of a significant upstream discharge, and the importance of the lowering speed at the end of the emptying
 - Good agreement between model and data in the case of flushing
- A special attention must be given to the choice of physical parameters : sediments measurements + calibration data
- Code still under development at EDF/R&D part of the system TELEMAC MASCARET <u>http://www.opentelemac.org/</u>

thanks for your attention