Lime Treatment of Soils Hydraulic Earthworks Application

G. Herrier
C. Chevalier
M. Froumentin
O. Cuisinier
S. Bonelli
JJ. Frv

Lhoist Group Ifsttar CER/CETE Normandy Laego – Nancy University Irstea EdF

Examples

- Friant-Kern Irrigation canal
 - Built in 1946, 240 km long
 - Canal discharge rate : 100 m³/s
 - Speed of 1,3 m/s
 - 6,4 km of blankets treated with 4% lime between 1972 and 77
 - Highly plastic clays : Pl ~ 40

TYPICAL EARTH REHABILITATION SECTION

Mississipi dikes : « Alton to Gale » (350 km)

Soil treatment with lime, context of the research

- Properties for a use in hydraulic earthen structures
- Conclusions
- Companion presentations

Soil treatment with lime, context of the research

- Properties for a use in hydraulic earthen structures
- Conclusions

Immediate improvement of workability : Wet silty or clayey soils can be treated and used in embankments

- Placement of materials : workability, bearing index
- Increase of cohesion and mechanical properties
- Reduction of swelling-shrinkage of clayey soils
- Displacement of shrinkage limit above OMC

hois

Water content

State of the art in 2005

- Is lime treatment of soils relevant for earthfill hydraulic structures ?
- Negative approach : "Density will decrease, therefore porosity and permeability will rise up ??"
- Only a few data published
- Lhoist have launched a research program on treated soils permeability

Soil treatment with lime, context of the research

- Properties for a use in hydraulic earthen structures
- Conclusions

Kneading Compaction Procedure

Figure 14. Outil de pétrissage à 3 pieds.

Measurements of permeability coefficients (k)

Measurements of permeability coefficients (k)

Why density and permeability are not correlated ?

Voids size distribution in the soils

 Mercury Porosimetry at Laboratoire Central des Ponts et Chaussées (Nantes, France) (now IFSTTAR)

Additional Results : mechanical Stability

- Triaxial tests on silts (IP = 11)
 - Results from Univ. Libre Bruxelles / Cogestac project
 - Friction angle unchanged
 - Cohesion highly improved

Erosion resistance

Trials at IRSTEA (ex-Cemagref) and IFSTTAR

$$\dot{\varepsilon} = \kappa_d . (\tau - \tau_c)$$

Amount of eroded soil = erosion rate x (water pressure – critical stress)

Internal erosion : results

Tests from IRSTEA (2011) – Clayey silt from the Rhône River, IP = 11

Lhoist

Enhanced Crumb-test trials from IFSTTAR (2011)

- silt PI= 11 untreated (90d)

Initial state

5 min

45 min

- silt treated with 2% lime (90d)

Initial state

5 hours

15 **hours**

Soil treatment with lime, context of the research

- Properties for a use in hydraulic earthen structures
- Conclusions

Conclusions and Perspectives

Lime treatment of soils confers

- An enhanced workability (known from geotechnique)
- A permeability level close to initial permeability
 - If kneading compaction (sheepfoot rollers) and humid state of materials applied
- An improved mechanical stability
- An improved resistance against internal and external erosion
- A displacement of the shrinkage limit
- A good chemical stability
- A possible revegetalization

Jobs examples show the durability of this technique in hydraulic environment

- Friant-Kern Canal
- Other works : examination in progress

Soil treatment with lime, context of the research

- Properties for a use in hydraulic earthen structures
- Conclusions

The 35-years old experience from Friant-Kern canal

- Gontran Herrier, Lhoist Group
- Friday August 31, 14h10, room Esquillan

Experimental dike in lime-treated soil

- Isabelle Charles, CER / CETE Normandy
- Friday August 31, 10h54, room C3

Lime Treatment : A new solution with new perspectives for silty to plastic soils in hydraulic earthworks

gontran.herrier@lhoist.com daniel.puiatti@lhoist.com didier.lesueur@lhoist.com

{Lhoist