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• To evaluate the potential of sandy beds to liquefy near coastal structures  

 by momentary liquefaction (Mory et al., 2007)  

 liquefaction induced by pore pressure build-up (Sumer et al., 1999) 

• To study the links between liquefaction, erosion, scour (de Groot et al., 2006) 

• Sensitivity to geo-mechanical parameters and soil gas content 

   

  Laboratory experiments / numerical model 
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Capbreton field experiments (LIMAS) 

Objectives 



Physical model 

Measurements: 

• Pore pressure against the wall 

• Free surface displacements 

• Bottom profiles (estimation of bed porosity) 

• Video observations (erosion depth, soil mobility) 

3 

lightweight sediment 

d50 = 0.64 mm     r = 1.18 
(Grasso et al., 2009) 

 

 un-saturated bed  
 % 8  to%1~gasC



Pore 
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Liquefaction 

threshold 

value 

  - bed liquefies at wave impact 

 

  - characteristic time  

of liquefied bed to settle ~ 10 s 

free  

surface  

elevation 

Loose and unsaturated bed 

Pressure  

differences 

Wave impact induced momentary liquefaction  
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Loose and unsaturated bed Compact and “saturated” bed 

%1~gasC%4~gasC

Liquefaction 
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Cyclic loading T = 1.55 s a = 1 cm loose, unsaturated bed 

Liquefaction 
after 

~ 20 cycles 

End of 
compaction 

after 
~ 80 cycles 
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PIV analysis 
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THE PORE-SCALE FINITE VOLUMES MODEL 

REGULAR 

TRIANGULATION  

one pore =  

one tethraedron  

in 3-dimensions  

(one value of pressure 

per pore) 

VORONOI 

TESSELATION: 

dual to the 

triangulation, it 

represents a “pore 

map” that allows 

the formulation of 

the problem 

- Coupled numerical model for the simulations of fluid-particle systems 

- The discrete element method (DEM) is used for the modelling of the solid phase 

- The DEM is combined with a flow model for incompressible pore fluids 

 
FINITE VOLUMES DISCRETIZATION 

The PFV model 

E. Catalano, PhD thesis, 2012 
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THE PORE-SCALE FINITE VOLUMES MODEL 

Wave action simulated by imposing a sinusoidal 

pressure profile at the seabed surface 

HALF-PERIOD PRESSURE PROFILE STATIONARY WAVE 

- 5000 particles 

 

- d50 = 6.1 cm     r = 2.6 

 

- large viscosity   m = 100 Pa s 

 

         to get a characteristic time  

         of consolidation ~ 10 s 
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DEM-PFV 
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Overall good qualitative agreement  
with experiments ! 

Pressure at the wall, every12cm in the vertical    DEM-PFV 

   loose, saturated bed 
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Liquefaction depends on  

drainage time / wave period 



Conclusions 

Perspectives 

• Better quantification of the soil parameters (G, n, n, …) and the gas content in 

the experiments 

• Use of Sakai et al. (1992) model to relate soil parameters to pressure damping 

• Erosion and liquefaction depth / wave conditions 

 in experiments / DEM-PFV numerical model 
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• Liquefaction reproduced in the laboratory using lightweight coarse sediment  

• Pore pressure build-up induced by cyclic loading 

• Wave-induced momentary liquefaction 

• Major role of soil gas content  

• reduces build-up / enhances momentary liquefaction 

• Liquefaction by pore-pressure build-up reproduced with DEM-PFV 

• Better description of dilatation / compaction phases 

• Overall bed compaction along repeated cycles / runs 

• Large zones of liquefied soil ‘available’ for transport 
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Thank you for your attention ! 
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Wave breaking, side view 
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Loose and unsaturated bed, rear view 
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Liquefaction 

threshold 

value 

Loose and unsaturated bed 
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Liquefaction 

Loose and unsaturated bed 
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pressure 

drop 

Loose and unsaturated bed 
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Soil dilatancy 

Loose and unsaturated bed 

Field measurements 
Bonjean et al, 2004 
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Loose and unsaturated bed After 6 runs 

progressive compaction & saturation along the runs 



Analysis of sand grain displacements  
during wave impact  
 
Acquisition frequency : 30 Hz  
1272 x 1016 pixels ---> 30 cm x 20 cm  
‘Davis’ LaVision software  
correlation window 16 x 16 pixels  
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Sand grain velocity fields  

shear stress modulus 

velocity curl 

velocity divergence 

dilatation 

t = 6.2 s 

t = 6.2 s 



compaction 

t = 6.2 s t = 6.6 s 

t = 6.6 s 



dilatation compaction 

t = 7.1 s t = 7.5 s 

t = 7.1 s t = 7.5 s 



Conclusions 

Perspectives 

• Better quantification of the soil parameters and the gas content in the experiments 

• Use of Sakai et al. (1992) model to relate soil parameters to pressure damping 

• Erosion and liquefaction depth / wave conditions 

• Comparison with DEM numerical modeling  

  (coll. 3S-R lab.: B. Chareyre, L. Scholtes, E. Catalano) 
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• Wave-induced momentary liquefaction reproduced in the laboratory using lightweight 

coarse sediment 

• Similar to field observations 

• Major role of soil gas content  

• Better description of dilatation / compaction phases 

• Large zones of liquefied soil ‘available’ for transport 

• Overall bed saturation and compaction along repeated runs 
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• Wave-induced momentary liquefaction reproduced in the laboratory using lightweight 

coarse sediment 

• Similar to field observations 

• Major role of soil gas content  

• Better description of dilatation / compaction phases 

• Large zones of liquefied soil ‘available’ for transport 

• Overall bed saturation and compaction along repeated runs 

 

Thank you for your attention ! 
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DEM numerical modeling (Grenoble - 3S-R) 

L. Scholtes, E. Catalano, B. Chareyre 
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Norme du tenseur de cisaillement 
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Wave induced liquefaction 

sand grain 
air inclusion 

water 
compressible 
pore fluid 

sea  
bed 
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Wave induced liquefaction 

sand grain 
air inclusion 

water 
compressible 
pore fluid 

due to phase lag in pressure transmission into the bed (Mei and Foda, 1981; Sakai et al, 1992; …) 

sea  
bed 
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Wave induced liquefaction 

sand grain 
air inclusion 

water 
compressible 
pore fluid 

liquefaction 
= 

sand grains  
loosing contact 
 

due to phase lag in pressure transmission into the bed (Mei and Foda, 1981; Sakai et al, 1992; …) 

sea  
bed 



43 

  



















r

r

r

r

r
s

g
s Cnnnh

g

PP
1101

Liquefaction threshold 
=  

pore pressure exceeding the soil weight  

sand grain 
air inclusion water 

0P

1P

h

n = bed 
porosity Cg = gas 

content 



From EC-FP5 LIMAS project: 
  

Field evidence of 
liquefaction occurrence 
 

  induced by wave impact on a  
 coastal structure 
 

 Mory et al. (2007) 
 Michallet et al. (2009)  
 

Pore pressure measurements, 
estimation of the sand bed level 

44 
% 8  to%1.0~gasC

Geo-endoscopic 
video camera for 
estimation of the 
soil gas content 

Breul et al. (2008) 

 



Pore pressure measurements, 
estimation of the sand bed level 

45 
% 8  to%1.0~gasC

From EC-FP5 LIMAS project: 
  

Field evidence of 
liquefaction occurrence 
 

  induced by wave impact on a  
 coastal structure 
 

 Mory et al. (2007) 
 Michallet et al. (2009)  
 

Geo-endoscopic 
video camera for 
estimation of the 
soil gas content 

Breul et al. (2008) 

 



Pore pressure measurements, 
estimation of the sand bed level 

Geo-endoscopic 
video camera for 
estimation of the 
soil gas content 

Breul et al. (2008) 
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% 8  to%1.0~gasC

From EC-FP5 LIMAS project: 
  

Field evidence of 
liquefaction occurrence 
 

  induced by wave impact on a  
 coastal structure 
 

 Mory et al. (2007) 
 Michallet et al. (2009)  
 



“Liquefaction Around Marine Structures” (LIMAS – EC FP5) 

• Field measurements of pore pressure transmission within the sand bed and 
induced liquefaction under wave action 

• Influence and quantification of the soil gas content 

Capbreton, Atlantic Ocean, France 

Mory et al., 2007 
Breul, Hadani & Gourvès, 2008 

Michallet, Mory & Piedra Cueva, 2009 
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Wave breaking on the instrumented bunker 



Bed changes during a tidal period 

Oct. 1 - Corner 
Hs = 69 cm 

Sept. 24 - Wall 
Hs = 123 cm 

Sept. 25 - Wall 
Hs = 67 cm 

Erosion produced by waves on the wall 
during rising tide 
 
Sediment deposition at the end of the tidal 
period 
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Instrumentation 

Pore pressure measurements  

and estimation of the sand bed level 

Geo-endoscopic 
video camera for 
estimation of the 
soil gas content 

 
Sol Solution / LAMI 
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threshold 

value 

Pressure difference  P3  P2  over-critical  

in phase with optical sensor response               soil mobility !! 
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Mei & Foda, 1981 
Sakai, Hatanaka & Mase, 1992 
 

Effect of gas content on the transmission of pressure 
variations inside the soil 

Effective bulk modulus of 

pore water 

No gas Gas content in the range 

23 104102   xx gasC

Vertical profiles of damping of pore 

pressure indicate the vertical variation 

of the gas content inside the bed  
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t=16h30 

Gas has escaped from the upper soil 

layer during rising tide  

Sept. 25, 2003 
 

t=14h45 

Vertical profiles of gas content inside the soil measured by a 
geoendoscopic camera  

                               (Breul, Hadani & Gourvès, 2008) 
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t=16h30 

Geo-endoscopic 

data 

Extrapolated from pressure 

damping data, using Sakai model 

Gas has escaped from the upper soil 

layer during rising tide  

Sept. 25, 2003 
 

t=14h45 

Vertical profiles of gas content inside the soil measured by a 
geoendoscopic camera  
(Breul, Hadani & Gourvès, 2008) 
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t=16h30 

t=14h45 

Gas has escaped from the upper soil 

layer during rising tide               

that largely changes pressure 

transmission in the soil !! 

Sept. 25, 2003 
 

Sakai model (-- -)  

data (o,+)  
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Intercomparison measurements / Sakai model : 
             pressure damping / phase lags  

                                      (Michallet, Mory & Piedra-Cueva, 2009) 



Sept. 25, 2003 

 thin lines:   t=14h45 

 bold lines:  t=16h30 

Damping and phase shift against wave frequency 

Measurements      Sakai et al. model 
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Light-weight sediment 

ρs = 1.19 g/cm3 

d50= 0.6 mm 

ws = 2.1 cm/s 

Physical model 
 length scale ~ 1/10 

   time scale  ~  1/3 

 

Shields scaling 

 

 

 

Rouse scaling  

2 m 

Wave propagation 

F. Grasso, C. Berni … 

5 cm 

2 m 57 


