RECLANATION Managing Water in the West

Methods to mitigate internal erosion risks in existing embankment dams

U.S. Department of the Interior Bureau of Reclamation

Seepage vs. Internal Erosion

- In general, mitigating for internal erosion means mitigating for potentially harmful seepage flows
- However, it is critical to understand that the focus should not necessarily be to reduce seepage but rather to reduce the potential for internal erosion
- This seems obvious, but there are examples in failure case histories where a focus on treating seepage actually worsened the potential for internal erosion

RECLAMATI

Two Basic Types of Internal Mitigation Measures

Seepage control

 Designed to collect or direct seepage into engineered features where it can be controlled to minimize adverse behavior such as high gradients, unfiltered exits, etc.

Seepage reduction

 Designed to reduce seepage by means of extending the seepage path through the use of vertical or horizontal barriers and thus reduce gradients and flows

RECLAMATION

Seepage Control Measures

RECLAMATIO

- Internal filters and drains
- Toe drains
- Drainage trenches at downstream toe
- Relief wells
- Horizontal drains
- Drainage galleries or tunnels
- Filter envelopes around conduits

- Failure mode associated with internal erosion through the dam and potentially from dam into foundation
 - Dam immediately upstream of a large city did not have original chimney filter nor any modern foundation treatment measures
- Modification
 - Two-stage chimney filter/drain of processed sand and gravel, as well as foundation filter and overlying seepage berm

RECLAMATI

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

- Failure mode associated with internal erosion through the dam
 - Embankment was discovered to have transverse crack through nearly full height, with openings up to 5 cm
- Modification
 - Chimney filter consisting of geosynthetic filter/drain overlain by processed sand filter, including horizontal drain and toe drain

RECLAMATI

Geo-Net Composite Full Length & 1-Stage Filter/Drain Lower Half

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

- Failure mode associated with internal erosion through the dam and/or foundation (along foundation contact)
 - Re-worked moraine and outwash deposits in foundation may not have been completely removed during construction
- Modification
 - Vertical interceptor filter trench to bedrock (sand installed with biodegradable slurry trench), chimney filter, and filtered downstream toe drain and berm

RECLAMATI

RECLAMAT

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

Seepage Reduction Measures

RECLAMATI

- Slurry trench cutoff walls
- Sheet pile walls
- Secant pile cutoff walls
- Grout curtains
- Upstream blankets

Cutoff Wall Locations

ICSE6 Paris - August 2012

Example Cutoff Wall (using soil-cement backfill)

- Failure mode associated with internal erosion through the foundation
 - Excessive downstream seepage, with signs of increasing flows with time
- Modification

ICSE6 Paris - August 2012

 Vertical cutoff wall installed at upstream toe, tied into embankment core and backfilled with a mixture of soil, bentonite, and cement

RECLAMATI

Example Cutoff Wall (using soil-cement backfill)

RECLAMAT

Example Cutoff Wall (using soil-cement backfill)

ICSE6 Paris - August 2012

Example Cutoff Wall (multiple trenching methods)

Chisel

Clamshell

ICSE6 Paris - August 2012

Example Cutoff Wall (using soil-cement backfill)

ICSE6 Paris - August 2012

Example Cutoff Wall (using soil-cement backfill)

ICSE6 Paris - August 2012

- Failure mode associated with internal erosion through a solutioned foundation bedrock unit
 - Sinkhole had been discovered upstream in reservoir
- Modification
 - Horizontal impermeable blanket consisting of geomembrane with soil cover, placed over upstream exposure of bedrock unit of concern

RECLAMATI

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

ICSE6 Paris - August 2012

Selection of a Preferred Alternative

- Selection of a seepage control alternative or a seepage reduction alternative can depend on several factors
 - Cost*
 - Degree of risk reduction*
 - Construction risks
 - Length of construction
 - Temporary loss of project benefits
 - Constructability

* Often the most important considerations

ICSE6 Paris - August 2012

Selection of a Preferred Alternative

RECLAMATION

- The preferred alternative is usually based on a consideration of all these factors, and requires careful deliberation
- The paper includes a table that lists:
 - Mitigation methods
 - Technical advantages
 - Technical disadvantages
 - Construction considerations
 - Relative construction costs

Mitigation	Technical	Technical	Construction Considerations	Construction		
Method	Advantages	Disadvantages		Cost		
Seepage Control Measures						
Internal filter/drain	Can include multiple stage filter/drain Exposes materials (can see potential issues) Can tie to monitoring system (toe drain)	May require lowering of reservoir	Typically requires slope steepening, which can reduce slope stability during construction Employs standard earthwork practices	Moderate cost		
Toe drain	Permits means of monitoring seepage Can include multiple stage filter/drain	Cannot provide drainage for deep seepage	Typically easy to construct	Generally low cost		
Drainage trench	Increased depth over toe drain Lessens or eliminates need for dewatering	Limited to one stage filter/drain	Will likely need to provide for trench stability (bracing, slurry trench, etc.)	Generally low cost		
Relief wells	Can reduce pressures in deeper aquifers Can design filter pack to prevent piping	Requires periodic maintenance Not a "continuous" feature	Number of wells; designs need to be flexible	Low to moderate cost		
Horizontal drains	Can be an effective measure at an existing facility	Requires particular attention to filtering	Can be constructed in both soil and rock Often need many drains	Low to moderate cost		
Drainage gallery	Can be a means of reducing pressures at different locations beneath a facility (during original construction)	Requires particular attention to filtering Generally has limited application at existing facilities	Can use tunnel or concrete conduit Requires drilling in a confined space	Moderate to high cost		
Conduit filter envelope	Provides filtering at a location that has traditionally been problematic	May lose capability to evacuate reservoir during construction period	May require removal of an existing conduit section to construct filter below the conduit	Generally low cost; could be moderate if it requires extensive excavation at existing dam		

REC

LAMATION

Mitigation	Technical	Technical	Construction Considerations	Construction			
Method	Advantages	Disadvantages		Cost			
Seepage Reduction Measures							
Slurry trench	Can construct while	Creates high gradients	"Blind" operation	Generally high			
cutoff wall	reservoir is full	at bottom/ends of wall	Requires specialty contractor	cost			
	Reasonable confidence of a	Potential for	Trench stability needs attention				
	continuous wall	uncontrolled slurry loss	May need a special detail to tie				
			into existing structure				
Sheet pile	Simple, low cost solution	May have gaps or	Problematic in coarse-grained	Generally low			
wall	Can construct while	"windows" where	soils	cost			
	reservoir is full	seepage may	Presence of water can lead to				
		concentrate	corrosion issues				
Secant pile	At relatively shallow depths,	With deep walls, can be	Requires specialty contractor	Moderate cost			
wall	good confidence that wall is	difficult to maintain	May need a special detail to tie				
	continuous	vertical alignment,	into existing structure				
	Can construct while	which could create gaps					
	reservoir is full						
Soil mixing or	Can construct while	May have "windows" –	Requires specialty contractor	Moderate cost			
jet grouting	reservoir is full	less likely to be	"Blind" operation				
		continuous than other					
		wall types					
		Generally limited to					
		downstream area					
		(unless drilling through					
		embankment)					
Grout curtain	Have used this technique for	May have "windows"	Need to carefully monitor grout	Low to			
	decades	Grout can degrade	pressures	moderate cost			
	Can construct while	Drilling through	"Blind" operation				
	reservoir is full	embankment may cause					
		hydraulic fracturing					
Upstream	Can reduce seepage at sites	Requires lowering of	Can use natural or geosynthetic	Generally low			
blanket	where vertical walls are	reservoir	products	cost			
	impracticable						

RECLAMATION

Selection of a Preferred Alternative

- A personal preference, if all else is equal, would be seepage control
 - Usually features standard earthwork construction methods
 - Uncovers the embankment and/or foundation and allows one to view existing conditions
 - Enhances installation of monitoring devices
 - Less likely to lead to concentrated gradients as seen in a cutoff wall

RECLAMATI

 Remember the fundamental precept of "First, do no harm"

Thank you for your attention

