

ICSE6 Paris - August 27-31, 2012

Violaine Dugué, Dr. K. Blanckaert, Prof. A. J. Schleiss

Contents

- Context
- Preliminary results
- Experimental setup
- Morphological results
- Hydrodynamical results
- Conclusions and perspectives

Context

Outer bend scour

Existing controlling measures

Macro-roughness elements

(Hersberger, 2002)

Bottom vanes

(Odgaard & Spoljaric, 1986)

Outer bank footing

(Roca et al., 2007)

Context - Bubble screen technique

Without the bubble screen

- Curvature-induced secondary flow
- Bar-pool bed morphology

With the bubble screen

- Generation of the bubble screen by a porous tube
- Two bubble-induced secondary flows
- Redistribution of mean velocities
- Morphological impact

Other applications of bubble screens in hydraulic field

- Aeration and destratification of lakes and reservoirs (Schladow 1992; Wüest et al. 1992)
- Aeration of ice-covered rivers (Neto et al. 2007)
- As pneumatic barriers to reduce saltwater intrusion (Nakai & Arita 2002)
- As fish barriers to stop the spread of invasive species (Welton et al. 2002)

Preliminary results

Clear-water scour results (Dugué et al. 2012)

Bubble screen experiment

Maximum scour depth = 0.12 m

Conclusions:

- Maximum scour depth reduced by about 50%
- Scour hole shifted away from the outer banks
- Deposition bar almost vanish

Experimental setup

Open-channel bend

- Constant width *B* = 1.3 m
- Sharply curved 193 ° bend (R = 1.7 m)

Sediment:

- Quasi-uniform quartz sand (mean diameter $d_s = 2$ mm)
- Sediment feeder at the entrance of the channel ($q_s = 0.025 \text{ kg/(m.s)}$)
- Settling tank at the end of the flume

Bubble screen:

- · Porous tube connected at both ends to an air-pressure device
- Ballasted with a chain and placed at 0.2 m from the outer bank
- Air pressure controlled by a manometer
- Air discharge measured with a rotameter

Experimental setup

Instrumentation

- Water surface elevation ---> Point gauge
- Final bed elevation —> Laser distometer
- Velocity profiles —— ADVP (Acoustic Doppler Velocity Profiler)

Experimental conditions:

- Live-bed conditions with constant sediment feeding ($q_s = 0.025 \text{ kg/(m.s)}$)
- Initially horizontal bed
- Two experiments performed under similar hydraulic and sediment conditions without and with the bubble screen

	Q	Pa	Н	U	R/B	R/H	B/H
Label	[l/s]	[kPa]	[m]	[m/s]	[-]	[-]	[-]
M75_14_00	75	-	0.14	0.41	1.31	12.1	9.2
MB75_14_p6_d20	75	600	0.14	0.41	1.31	12.1	9.2

Morphology

Bottom elevation

Velocity redistribution - Bend entry (90°)

Velocity redistribution - Bend exit (180°)

Conclusions and perspectives

Conclusions

- The bubble screen can redistribute mean velocities patterns
- Higher influence on the morphology at the exit of the bend

Perspectives

- Investigation on scale effects
- Influence of sediment characteristics
- Influence of bend curvature
- Application to other scouring problems (bridge pier or abutments..)

