CHARACTERIZATION AND REPAIR OF INTERNAL EROSION IN SANDSTONE FOUNDATION

By J-J FRY & G. JORGE

INTERNAL EROSION IN DAM FOUNDATION

From the 2 hereunder failure paths of internal erosion:

- 213 piping through the embankment
- 2. 44 piping through the foundation or of the embankment into the foundation

Internal erosion through foundation is less easy to characterize than through embankment

LESSONS LEARN FROM DAM ACCIDENTS

- BOUZEY (1895)
- TIGRA (1917)
- GLENO (1923)
- FLAGSTAFF (1963)
- FONTENELLE (1965)
- SISGA (1979)
- ITIYURO (1981)

Weathered Sandstone Foundations are most susceptible to internal erosion

CHARACTERIZATION TESTS FOR DAM FOUNDATION

Emphasis is put on two investigation tests to characterize the susceptibility of the sandstone foundation to be eroded

- 1. The drilling recording
 - 2. The Water tests

1- Drilling Recording « DUR » = Hardness Hardness = P*C/V

- P: vertical pressure
- C : torque
- V : tool rate

Hardness of the rock is characterized by

Drill machine: F320 with tricone VH1

Zone à perméabilités Water Critical Pressure décroissantes Pression colmatage Zone à perméabilit croissantes colmatage Ecoulement faminaire altération du milieu Pression Critique déb Discharge Ecoulement turbulent altération d altération du milieu Débit Critique Ko≂Kf 0 al-Ecoulement laminaire en milieu a4-Ecoulement turbulent en homogène milieu homogène $i(er)=Kf/K_0 < 1$ $i(er)=Kf/K_0>1$ Qс a2-Ecoulement laminaire, a5-Ecoulement turbulent. colmatage à haute pression comatage progressif $i(er)=Kf/K_0>1$ $i(er)=Kf/K_0>1$ a6-Fanulement turbulen'. a3-Ecoulement dibunnage progressif débourrage à haute pression

2 – Water Lugeon tests

2 new parameters:

Critical pressure P_c
limit of linearity
between pressure
and discharge rate

Opening ratio K_f/K_o

- Ko: initial permeability
- Kf : final permeability

Lessons from ITIYURO dam incident

Lessons from ITIYURO dam

Leakages caused internal erosion in the sandstone foundation (>1000m³) Sinkholes occured in the rockfill crest and upstream face

Application to ITIYURO dam

weak sandstones which suffered internal erosion have very low hardness values:

DUR < 20.

Investigations of ITIYURO dam

- weak sandstones areas suffering internal erosion have:
- low critical pressure Pc < 0,4 MPa
- Lugeon Permeability K
 - > 15 Lugeon

Correlation between P_c and Cohesion

Correlation between P_c and porosity

Experience from other dam incidents

Criteria from dam incidents

Paramet ers	Unity	ITIYURO		BORDE SECO		LAS CUEVA		LA HONDA	
Statistic s		min	Max	min	Max	min	Max	min	Max
P_{c}	100 kPa	0	2	0,4	2	0	2	0	1
K_{o}	LU	35	50	16	57	75	135	15	36
$O_c = K_f/K_o$	-	3	8	3	6	2	4	2	4
Dur	-	0	20	0	10	0	10	0	10

Observed limits between erodable and no-erodable rock

Final assesment of criteria of area susceptible to be eroded

PROPOSED CRITERIA

Critical Pressure: $P_c < 0.2 \text{ MPa}$

Hardness: Dur < 10

Opening Criterion: $O_c > 3$

Initial Permeability: $K_o > 15 \text{ UL}$

CONCLUSION: PROPOSED DESIGN CRITERIA

New parameters are proposed from drilling recording and water tests to characterize the resistance to internal erosion of sandstone foundations.

<u>Depth of diaphragm wall</u>: depth where the pore pressure under the full reservoir is lower than the critical pressure and the opening criterion is lower than 2 and Dur > 20-30.

