

Robustness of the 2D-DC Resistivity Imaging method applied to dike survey : state of the art, limitations and outlooks

Yannick FARGIER, Sérgio PALMA LOPES, Cyrille FAUCHARD,

Daniel FRANÇOIS, Anaëlle JOUBERT, Philippe CÔTE

31 August 2012

Paris, France

Summary

Electrical Resistivity Imaging

- 2D ERI principle
- Resolution study principle

Dike survey by ERI

- Limitations
- Parametric study
- Impact of the measurement error on R_M
- InGEOHT 2D+ principle

Case study

- Presentation of the surveyed structure
- Results

Conclusion and Outlooks

Dike survey by ERI

Case study

Conclusion & Outlooks

Summary

Electrical Resistivity Imaging

- 2D ERI principle
- Resolution study principle

Dike survey by ERI

- Limitations
- Parametric study
- Impact of the measurement error on R_M
- InGEOHT 2D+ principle
- **Case study**
 - Presentation of the surveyed structure
 - Results

Conclusion and Outlooks

Dike survey by ERI

Case study

Conclusion & Outlooks

D Electrical Resistivity Imaging principle

Limitations:

ERI principle

Resolution study principle

1.

- non-uniqueness of the solution
- depth of investigation

1

Resolution study principle

$$R_M = (J^T W_d^T W_d J + \lambda C^{-1})^{-1} J^T W_d^T W_d J$$

Gives the capacity to invert uniquely each inversion cell (robustness of the solution)

 R_M : Model Resolution Matrix

- J : Sensitivity matrix
- W_d : Matrix of data error
- λ : damping factor

ERI principle

Resolution study principle

C: smoothing matrix

Resolution study principle

$$R_M = (J^T W_d^T W_d J + \lambda C^{-1})^{-1} J^T W_d^T W_d J$$

Give the capacity to invert uniquely each inversion cell (robustness of the solution)

1. ERI principle

2. Resolution study principle

- R_M : Model Resolution Matrix
- J : Sensitivity matrix
- W_d : Matrix of data error
- λ : damping factor
- C : smoothing matrix

Dike survey by ERI

Case study

Conclusion & Outlooks

Summary

Electrical Resistivity Imaging

- Basics
- Resolution study principle

Dike survey by ERI

- Limitations
- Parametric study
- Impact of the error on R_M
- InGEOHT 2D+
- **Case study**
 - Presentation of the study
 - Results

Conclusion et perspectives

Electrical Resistivity Imaging	1.	Limitations
Dike survey by ERI	2.	Parametric study
Case study Conclusion & Outlooks	3. 4.	Impact of the error on R _M InGEOHT 2D ⁺

Dike survey by ERI

For cost effective reasons, surveys are performed longitudinaly

• For dike longitudinal surveys, 2D Hypothesis is completely wrong

Is the 3D behaviour of the dike composition has a significant impact on the measurement ?

Electrical Resistivity Imaging	1.	Limitations
Dike survey by ERI	2.	Parametric study
Case study	3.	Impact of the error on R_M
Conclusion & Outlooks	4.	InGEOHT 2D ⁺

D Parametric study (1/2)

Parametric study (2/2) \ominus n.Ω00 Réservoir 1000Ω.m 1100 10 1000 Distance inter-électrodes (m) Topography effect 900 10000 m 800 700 40 600 45 Water reservoir effect 50 500 $\begin{array}{cccc} 8 & 10 & 12 & 14 \\ \text{distance entre le quadripôle et le réservoir (m)} \end{array}$ 2 4 16 18 20 6

31 August 2012

Electrical Resistivity Imaging1.LimitationsDike survey by ERI2.Parametric studyCase study3.Impact of the error on R_MConclusion & Outlooks4.InGEOHT 2D+

□ Impact of the measurement error on R_M

Conclusion : conventional resolution results over-estimate the robustness of an imaging result

Electrical Resistivity Imaging	1.	Limitations
Dike survey by ERI	2.	Parametric study
Case study Conclusion & Outlooks	3. 4.	Impact of the error on R _M InGEOHT 2D+

□ InGEOHT 2D⁺

Principle : The topography and the water reservoir is explicitly defined in the inverse problem

Electrical Resistivity Imaging	1.	Limitations
Dike survey by ERI	2.	Parametric study
Case study	3.	Impact of the error on R_M
Conclusion & Outlooks	4.	InGEOHT 2D+

InGEOHT 2D+

The resolution and depth of investigation are not reduced.

R_M can now be used to improve the interpretation of 2D ERI longitunal survey on dike.

Dike survey by ERI

Case study

Conclusion & Outlooks

Summary

Electrical Resistivity Imaging

- Basics
- Parametric study
- Resolution study principle

Dike survey by ERI

- Limitations
- Impact of the error on the resolution
- InGEOHT 2D+

Case study

- Presentation of the survey
- Results

Conclusion et perspectives

Presentation of the survey 1.

Results

Case study

Conclusion & Outlooks

Dike survey by ERI

Presentation of the survey

- Homogeneous
- Concrete facing (upstream side)
- Height of 6 to 7 meters
- 475 meters longitudinal survey (96 electrodes with 5 meters inter electrode spacing)
- Wenner Schlumberger acquisition protocol

9

- Electrical Resistivity Imaging
 - Dike survey by ERI
- 1. Presentation of the surveyed dike

ICSE6

2. Results

Case study

Conclusion & Outlooks

Results

31 August 2012

Summary

Introduction

- Problématique des Ouvrages Hydrauliques en Terre (OHT) & enjeux
- Besoin et mode d'application
- Sélection de l'Imagerie de Résistivité Électrique (IRE)
- Conclusion, problématique & démarche scientifique

Auscultation des OHT par IRE

- Le problème inverse en IRE
- IRE & auscultation des digues
- Étude numérique
- InGEOHT
- Stratégies d'acquisition et d'inversion
- **Cas d'étude**
 - DiguExpERT
 - Ouvrage réel

Conclusion & Perspectives

Conclusion & Perspectives

In general :

• An imaging result is non-unique — Questions about the robustness

For 2D ausculted medium:

• R_M (conventional) can be used to help the interpretation of the result

For 2D longitudinal survey of dikes :

- Dike geometry has a strong effect on the measurement
- The error on the measurement has an effect on R_M and limit the depth of investigation
- Conventional depth of investigation are always over estimated
- New inversion algorithm can be used to overpass this limitation

THANK YOU FOR YOUR ATTENTION

Electrical Resistivity Imaging1.LimitationsDike survey by ERI2.Parametric studyCase study3.Impact of the error on R_MConclusion & Outlooks4.InGEOHT 2D+

$\Box InGEOHT 2D^+$

- Gauss-Newton inversion algorithm
- 100 < number of inversion parameter < 10 000
- Minimisation of the objective fonction :

$$\Phi = \Phi_d + \lambda \Phi_m = \|\mathbf{D}(\vec{d}_{mes} - \Gamma(\vec{m}))\|_2^2 + \lambda \|\mathbf{C}(\vec{m} - \vec{m}_0)\|_2^2$$

- Φ_d : data objective function;
- λ : damping factor;
- d_{mes}: vector of measured data;
- m : model ; m₀ : *a priori* model;
- Φ_m : model objective function
- \mathbf{D} : Data error
- Γ : forward problem
- **C** : smoothing matrix

$$\underbrace{\mathbf{G}^{T} \mathbf{D}^{T} \mathbf{D}^{\mathbf{G}}}_{\text{Hessian}} + \lambda \mathbf{C}_{m}^{T} \mathbf{C}_{m}) \Delta \vec{m}_{i+1} = \underbrace{\mathbf{G}^{T} \mathbf{D}^{T} [\mathbf{D}(\vec{d}_{mes} - \Gamma(\vec{m}_{i}))]}_{\text{Gradient of the objective function}}$$

Gradient of the objective function
Occam type regularisation of the Hessian

8

