Prediction of Headcut Erosion Development on the Breach Slope

ICSE-6, 2012, Paris, France

Gensheng Zhao, Paul. J. Visser, Patrik Peeters, Han. K. Vrijling

September 28, 2012

TUDelft

1

Section of Hydraulic Engineering

Delft University of Technology

Background

Teton Dam Breach, USA, June 5,1976

Banqiao Breach, China, August, 1975

Background Lillo-Fort, Belgium, 2012

5

Hydrodynamic Erosion Model

Hydrodynamic Erosion Model

Weight under water

$$W_s = a_1 \frac{\pi}{6} (\gamma_s - \gamma) D^3$$

$$\tau_f = \sigma \tan \varphi + c$$

$$N = \frac{\pi D^2}{4} \tau_f$$

Uplift force

$$F_y = a_2 c_y \frac{\pi D^2}{4} \frac{\rho U_d^2}{2}$$

Drag force

$$F_x = a_3 c_x \frac{\pi D^2}{4} \frac{\rho U_d^2}{2}$$

Hydrodynamic Erosion Model

According to Moment equilibrium

$$\frac{\tau_c}{(\gamma_s - \gamma)D} = C \frac{\tau_f}{\rho v^2} \theta_c$$

Analysis and discussion

Comparison of shear stress between measured data and calculated data for EG

September 28, 2012

Analysis and discussion

Comparison of shear stress between measured data and calculated data for CG

Migration rate

Comparison between Calculated and measured migration rate

September 28, 2012

Conclusions

•Headcut migration

Geotechnical Problem and Hydraulic Problem

•Critical shear Stress

$$\frac{\tau_c}{(\gamma_s - \gamma)D} = C \frac{\tau_f}{\rho v^2} \theta_c$$

•Headcut Migration Rate

$$\frac{dx}{dt} = \frac{T}{f(T)}\varepsilon$$

September 28, 2012

Thanks for your attention!! Any Questions or Comments??

