Scour Vulnerability Evaluation of Pile Foundations During Floods for National Highway Bridges

Jae Hyun PARK, Kiseok KWAK, Ju Hyung LEE, Moonkyung CHUNG 2012. 8. 29

Scour Vulnerability Evaluation

Case Study of Piles

Conclusions

≫ Bridge Scour in Korea

Bridge failure due to scour

• After disasters caused by big typhoons Rusa (2002) and Maemi (2003), the failures of even large bridges attracted more concerns on scour problem in Korea.

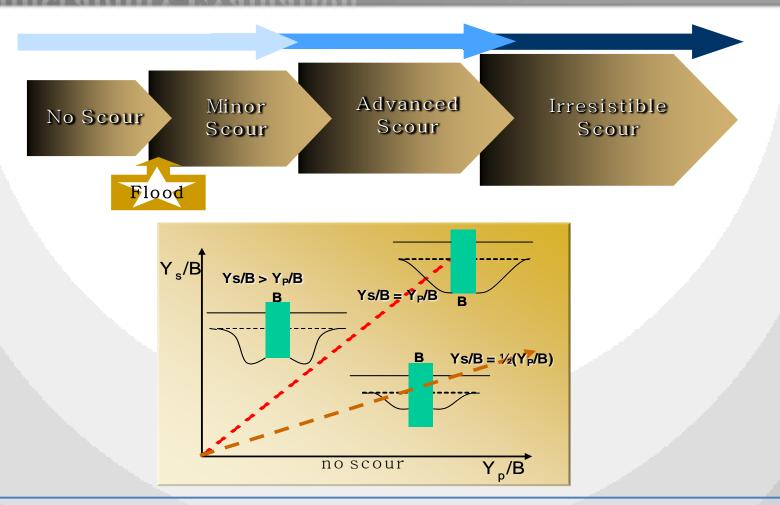
Gam-cheon railroad bridge failure(2002) Typhoon 'Rusa'

Gu-po bridge failure(2003) Typhoon 'Maemi'

Research Purposes

Prioritization Based on Vulnerability

- Prior researches : analysis, inspection, and countermeasure
- For the reasonable plan of action, vulnerability evaluation and prioritization is needed
- Bridge Scour Management System (BSMS) (2005) based on (1) GIS DB and (2) Prioritization
- ullet Scour vulnerability evaluation and prioritization o real twelve highway bridges with pile foundations located in central part of Korean peninsula


> Vulnerability Evaluation

Concept of foundation vulnerability to scour

- Determination of scour vulnerability
- hydraulic instability
- structural instability
- geotechnical instability
- Geotechnical factors in the analysis of scour vulnerability has recently been acknowledged.
- Studies in the past was generally focused on geometrical and physical conditions in analysis.

- During scour
- displacements and rotations of piers could be induced (serviceability)
- bearing capacity reduces (ultimate)
- The <u>failure</u> of bridge is mainly related to the <u>ultimate limit states</u> (bearing capacity <u>problem</u>) of the foundation.

Vulnerability Evaluation

- Simple method using scour depth(Y_s), foundation embedded depth(Y_p), foundation width (B) (De Falco et al., 1997) geometrical concept
- Geotechnical factors brought in the analysis of the vulnerability to scour of shallow foundation (Federico et al., 2003)

Prioritization

Scour vulnerability prioritization: totally 5 Grades

- Expanded method applicable to both of shallow foundation and pile foundation
- For the maintenance, expected scour depth \geq foundation embedded depth ($Y_s \geq Y_p$):
 - → Grade 1
- Expected scour depth < foundation embedded depth (Y_s < Y_P):

•Vulnerability ratio(ξ): bearing capacity ratio between before and after scouring

$$\xi = \frac{Q_u^{normal}}{Q_u^{scour}} = \frac{Q_a \times (S.F.)_{normal}}{Q_a \times (S.F.)_{scour}} = \frac{S.F._{normal}}{S.F._{scour}}$$
Qu = Ultimate Bearing Capacity

Qa= allowable Bearing Capacity


S.F._Safety Factor

S.F. = Safety Factor

- Adjust grade according to present field condition (with engineering judgment)
 - bridge in need of urgent measure → Grade 0
 - bridge in worse condition upgrade the calculated level
 - bridge in sound condition fix the calculated level

Prioritization

Scour Vulnerability Prioritization: totally 5 Grades

Scour Analysis

- Hydraulic, geotech., structural information on bridge foundation.
- Scour analysis is performed in worst condition of 100yr design flood.
- All 12 cases have non-cohesive material -> scour depth calculation :
 - CSU, Froehlich, Laursen, Neill
 - The equations incorporate different variables
 - → inherently different scour depths calculated
 - Representative scour depth: avg. value of scour depths accepted
- Considering geological stratum in subsurface from boring test.
 - soft and hard rocks are not erodible in this study

☼ Scour Analysis

CSU

$$y_s = 2.0 K_1 K_2 K_3 K_4 a^{0.65} y_1^{0.35} Fr_1^{0.43}$$

Where: y_s = Depth of scour in feet (m)

K₁ = Correction factor for pier nose shape

K₂ = Correction factor for angle of attack of flow

K₃ = Correction factor for bed condition

K₄ = Correction factor for armoring of bed material

a = Pier width in feet (m)

y₁ = Flow depth directly upstream of the pier in feet (m). This is taken from the flow distribution output for the cross section just upstream from the bridge.

Fr₁ = Froude Number directly upstream of the pier. This is taken from the flow distribution output for the cross section just upstream from the bridge.

Neill

Ys/b = 1.5 (y/b)0.3

Froehlich

$$y_s = 0.32 \phi(a')^{0.62} y_1^{0.47} Fr_1^{0.22} D_{50}^{-0.09} + a$$

where: ϕ = Correction factor for pier nose shape: $\phi = 1.3$ for square nose piers; $\phi = 1.0$ for rounded nose piers; and $\phi = 0.7$ for

sharp nose (triangular) piers.

 Projected pier width with respect to the direction of the flow, feet (m)

Laursen

$$\frac{y_c}{y_a} = \left(\frac{Q_c}{Q_a}\right)^{6/7} \left(\frac{W_a}{W_c}\right)^{4} \left(\frac{n_c}{n_a}\right)^{8}$$

and

$$y_s = y_c - y_a$$

where

y_s = scour depth (ft)

y_a = average depth in the main reach (ft)

y_c = average depth in the contracted section (ft)

Wa = width of the main reach (ft)

W_c = width of the contracted section (ft)

Q_a = flow in the main reach (cfs)

Q_c = flow in the contracted section (cfs)

n_a = Manning n for main reach (s/ft^{1/3})

n_c = Manning n for contracted section (s/ft^{1/3})

Scour Depth Calculation

Basin information of bridges, piles, and streams

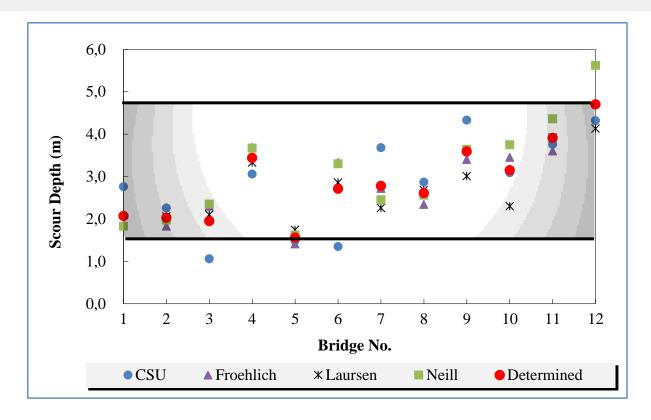
No.	Bridge code	Bridge length (m)	Maximum span length (m)	Pile embed depth (m)	Stream bed slope	100-year Design flood (m³/sec)	100-year Design water depth (m)	100-year Design water velocity (m/s)
1	GC	65	25.0	11.7	0.007	530	2.77	3.87
2	HS	75	16.3	17.9	0.001	577	3.50	2.24
3	NC	90	30.0	9.2	0.007	361	2.45	1.96
4	DM	124	31.0	18.3	0.006	1,286	4.02	3.81
5	IW1	44	16.0	13.0	0.004	250	3.12	2.59
6	JA	108	27.0	24.9	0.001	480,	3.14	1.66
7	JS	205	53.0	14.1	0.004	1,125	2.63	4.10
8	NP	65	14.0	23.6	0.002	487	4.58	2.42
9	NC1	85	42.5	17.5	0.011	500	3.80	3.48
10	YA1	62	17.0	7.9	0.021	145	3.00	1.38
11	СН	91	30.2	6.7	0.001	590	6.15	2.00
12	GE	100	20.0	7.9	0.006	650	7.03	1.67

12 pile foundation bridges selected for the analysis

• Bridge length: 44~205m , Pile embedded depth: 6.7m ~ 24.9m

• streambed slope : 0.001 ~ 0.011 , 100yr water depth : 2.45 ~ 7.03m

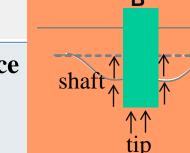
• 100yr water velocity : 1.66 ~ 4.10 m/s


Scour Depth Calculation

Scour depth calculation results

No.	Bridge code	Streambed particle size (mm)				Rock	Pier	Pier	Calculated scour depth(m)				Determined (Average)
		D_{10}	D_{50}	D ₆₀	D_{95}	depth (m)	width (m)	length (m)	CSU	Froehlich	Laursen	Neill	scour depth (m)
1	GC	0.09	1.00	1.57	15.0	13.2	1.0	1.0	2.76	1.84	1.83	1.83	2.1
2	HS	0.37	0.81	0.96	1.70	21.5	3.6	16.0	2.26	1.83	2.06	1.97	2.0
3	NC	0.08	4.00	6.98	30.00	7.5	4.8	22.3	1.06	2.30	2.10	2.35	2.0
4	DM	0.21	6.00	8.83	30.00	5.9	6.5	8.5	3.06	3.69	3.33	3.67	3.4
5	IW1	0.21	6.00	11.75	34.00	12.4	3.6	12.0	1.48	1.41	1.74	1.62	1.6
6	JA	0.42	2.20	2.69	6.50	N/A	4.0	20.8	1.35	3.33	2.86	3.30	2.7
7	JS	0.12	0.25	0.28	1.00	N/A	5.0	8.0	3.68	2.72	2.26	2.45	2.8
8	NP	0.12	1.50	3.89	33.0	N/A	4.0	11.5	2.87	2.34	2.68	2.56	2.6
9	NC1	0.35	1.11	1.51	12.91	N/A	2.0	2.0	4.33	3.40	3.01	3.64	3.6
10	YA1	0.31	1.62	2.33	11.17	N/A	1.2	1.2	3.09	3.45	2.30	3.75	3.2
11	СН	0.46	1.61	1.94	4.39	N/A	1.8	1.8	3.76	3.60	3.92	4.36	3.9
12	GE	0.45	1.09	1.39	5.41	N/A	2.0	2.0	4.32	4.74	4.13	5.62	4.7

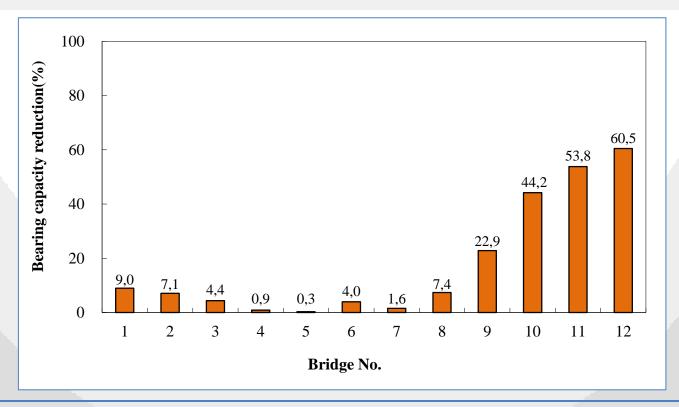
Scour Depth Calculation


Scour depth calculation results

- Expected scour depth: 1.6 4.7m
- CSU: smaller scour depth in case large size particle exists due to armoring effect (3,4,6,12)
- Froehlich: larger scour depth than Laursen and Neill due to considering inflow angle of water

Scour Vulnerability

- Bearing capacity calculation
- Bearing capacity of pile = tip resistance +shaft resistance $(\sigma'_v N_q + c N_c) A_p = \sum f_s A_s$



- Bearing capacity reduction due to scour :
 - tip : overburden pressure (σ_v) reduction
 - shaft: resistance reduction of exposed area to the flow due to scour

	No.	- coae i	Pile embedded length (m)	Scour depth (m)	Bearing ca	pacity(tonf)	Bearing capacity	Scour	S.F.	Scour
	110.				Before scour	After scour	reduction (%)	vulnerability (ξ)	atter conliri	vulnerability prioritization
	1	GC	11.7	2.1	66.8	60.8	9.0	1.01	2.96	4
l,	2	HS	17.9	2.0	59.2	55.0	7.1	1.01	2.98	4
	3	NC	9.2	2.0	115.7	110.6	4.4	1.00	3.00	4
	4	DM	18.3	3.4	1195.3	1184.6	0.9	1.00	3.00	4
	5	IW1	13.0	1.6	59.6	59.4	0.3	1.00	3.00	4
	6	JA	24.9	2.7	108.8	104.5	4.0	1.02	2.95	4
ĺ	7	JS	14.1	2.8	76.9	75.7	1.6	1.00	3.00	4
	8	NP	23.6	2.6	73.0	67.6	7.4	1.02	2.94	4
	9	NC1	17.5	3.6	359.4	277.2	22.9	1.30	2.31	4
	10	YA1	7.9	3.2	171.1	95.5	44.2	1.79	1.67	3
	11	СН	6.7	3.9	20.8	9.6	53.8	2.16	1.38	3
	12	GE	7.9	4.7	145.0	57.3	60.5	2.53	1.19	3

Scour Vulnerability

Bearing capacity calculation

- reduction (%) = 1-(bearing capacity after scour / bearing capacity before scour)
- Piles has large embedded depth so that they are more stable to scour than spread footings.
- Three (10, 11, 12), however, exhibit considerable reduction in resistance after scour in the range of $44\% \sim 60\% \rightarrow$ significant negative effects such as lateral displacement as well as axial resistance problem

***** Conclusions

Introduction

-Bridge scour vulnerability prioritization is introduced with multidisciplinary concept using the correlation between bridge scour and bearing capacity of foundation.

Scour depth calculation

- -Scour depths were estimated using: (1) the CSU equation; (2) the Froehlich's equation; (3) the Laursen's equation; and (4)the Neill's equation. $\rightarrow 1.6 \sim 4.7$ m
- -Different scour depths due to different variables considered in equations

Scour vulnerability analysis

- -Scour vulnerability evaluation results show that three of 12 pile foundation have potential risk of failure due to scour. It is noted that **pile foundations may have** considerable decrease in their bearing capacity due to scour.
- -Ongoing research has started to apply this to offshore structures

Thanks for attention!

≫ Bridge Scour in Korea

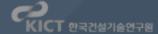
Conditions related to scour in Korea

Geographical

- · mountainous area
 - 70 of the territory
- high avg. streambed slope
- non-cohesive materials

Climatic

- uneven seasonal rainfall distribution
 - 2/3 annual precipitation
 - several typhoons
- extremely variable annual precipitation


Lots of bridge foundations annually damaged due to scour

Bridge Failure due to Scour 4520 verb Flow b Bridge Ead ured Scoul Korea Institute of Construction Technology KICT 한국건설기술연구원

≫ Vulnerability Evaluation

Concept of foundation vulnerability to scour

- Significant factors governing soil scour and bearing capacity of foundation
 - shape and size of foundation
 - hydraulic characteristics of the flow
 - physical and mechanical properties of ground
 - estimated scour depth and present field condition
- Scour analysis
 - appropriate scour model with geotechnical characteristics
 - accurate design floods with hydraulic characteristics
- Bearing capacity of bridge foundation : bed material , foundation type
 - spread footing (Federico et al., 2003)
 - pile foundation

