

# Classification of the Eroded Cavings behind Concrete-faced Embankments by Ground-Penetrating Radar

Jian-Hong Wu
Dept. Civil Engineering,
National Cheng Kung University,
Tainan, Taiwan

# Outline

- Introduction
- Investigated river dikes
- Research method
- Research results
- Conclusions

## Introduction



- Concentrating rainfalls in plum rain and typhoon seasons often cause floods in Taiwan.
- The flood along Tsengwen River in southern Taiwan caused by Typhoon Nari in September, 2010.
- The flooding area was about 1,293 ha, and the total loss was about 8 million USD.





# Introduction

- The mechanism of the erosion at the river embankments are:
  - (1) The river water scours out the earth fill at the bottom of dike and generates cavities behind the concrete plates.
  - (2) Rainwater infiltrates to the joints and cracks on concrete plates and erodes the earth fill behind.
- The river water scourring can be determined by the scouring effect at the toe of the river dike.
- Erosions caused by the rainfall infiltration is difficult to be detected visually because the concrete plate is thick and rigid.
- In the early stages of erosions, insignificant signs of damage can be observed on the concrete plates.

# Investigated river dikes





- Shan-shang embankment was built between 1998 and 2011.
- This section is close to the river trench (about 40-70 m) and often scoured out by the stream.
- The land side slope has 1 step concrete-faced, and the river side slope has 2 steps.

#### Research method





- A 400MHz antenna is used in this study.
- The wave velocity of the concrete and soils is assumed to be 0.1 m/ns.
- The maximum two-way travel time is set 50 ns in this study with the maximum signal penetration depth is 2.5m.

# Research results





GPR detection at another dike

# Research results

| No. of concrete plate |    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|-----------------------|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Survey                | 11 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 2  | 2  | 1  | 2  |
| line                  | 12 | 3 | 3 | 2 | 1 | 1 | 2 | 3 | 3 | 2 | 2  | 1  | 1  | 1  | 2  | 2  | 1  | 1  | 1  | 1  | 1  | 2  | 2  |
|                       | 21 | 2 | 3 | 3 | 3 | 4 | 4 | 2 | 1 | 1 | 1  | 2  | 1  | 2  | 2  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|                       | 22 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 2 | 1  | 1  | 1  | 1  | 2  | 1  | 1  | 3  | 3  | 3  | 3  | 1  | 2  |
|                       | 31 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 1 | 2  | 2  | 3  | 1  | 2  | 1  | 1  | 1  | 1  | 1  | 1  | 4  | 3  |
|                       | 41 | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 4  | 4  | 3  | 4  | 3  | 5  | 2  |

| No. of concrete plate |    | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 |
|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Survey                | 11 | 2  | 2  | 2  | 1  | 2  | 2  | 3  | 3  | 3  | 3  | 3  | 3  | 3  | 3  | 3  | 2  | 2  | 2  | 2  | 2  | 2  |
| line                  | 12 | 2  | 1  | 3  | 2  | 3  | 1  | 2  | 2  | 2  | 2  | 1  | 3  | 3  | 3  | 3  | 3  | 3  | 3  | 1  | 1  | 1  |
|                       | 21 | 1  | 2  | 3  | 3  | 3  | 3  | 2  | 2  | 2  | 1  | 3  | 3  | 4  | 3  | 3  | 3  | 2  | 2  | 2  | 1  | 2  |
|                       | 22 | 1  | 1  | 3  | 3  | 3  | 3  | 3  | 3  | 3  | 3  | 1  | 1  | 1  | 1  | 3  | 3  | 1  | 2  | 3  | 3  | 3  |
|                       | 31 | 3  | 4  | 1  | 2  | 2  | 1  | 1  | 2  | 1  | 1  | 1  | 2  | 4  | 1  | 3  | 1  | 2  | 1  | 1  | 1  | 1  |
|                       | 41 | 3  | 4  | 2  | 2  | 3  | 3  | 2  | 2  | 2  | 2  | 3  | 2  | 4  | 3  | 4  | 2  | 2  | 3  | 2  | 3  | 2  |

#### Research results

- The erosion degree of each span can be assemblied after classifying the erosion degree obtained from the survey lines at the crown, upper slope, mid platform, and lower slope.
- High erosion degree occurs at Spans 2 to 7 and Span 34 to 37.
- High erosion degree can be found at Line 4-1, showing that the toe of the embankments were eroded severely by the river.
- The engineers can identify the locations of high erosion degree from the figure and analyze the mechanism of embankment erosions.

## Conclusions

- In this study, the erosion degree of concrete-faced dikes was investigated by the length and depth of the eroded cavities using GPR.
- The erosion degree of each span of the dikes was classified.
- Since the severely eroded areas can be discovered, we can decide the priority of maintenance to the river dikes after putting the erosion degree of each span together.
- The GPR images provide detail information for further study on the possible causes of dike erosion.



## Thank you for your patient