# RECENT DAM INCIDENTS AND FAILURES IN SWEDEN

## Granö Hästberga

(Kvistforsen)

Ingvar Ekström

Sweco Infrastructure





Granö Hydro Power Plant in Mörrumså Goteborg

- Built in 1958 19 m high
- 2 units
- 9 MW
- 32 GWh/year
- 60 m³/s design flow
- Consequence class 1A





Granö power station





### Breach area





## Failure zone









## The outflow was stopped by filling coarse rock fill and till upstreams of the breach





#### Information from operational center

Monday morning automatic stop of right turbine. Left turbine is initiated.

Service personnel are contacted as it is assumed that the upstream eel rack is clogged. It is decided to clean the rack during Tuesday.

At 22:39 Monday evening the effect of the turbine is lower than expected.

At 23:09 A-alarm is set off by the turbine which automatically shuts from 22 to 8 m<sup>3</sup>/s.

DC stops the turbine manually at 23:56 assuming the rack is clogged.

At 03:46 a multitude of alarms are set off from the power station and service personnel are dispatched.

Service personnel arrives at 04:45 and reports ongoing dam failure. Fortunately no complete breach due to coarse rocks in downstream fill



### Upstream view of intake





#### No downstream filter

Loosely compacted rock fill with high porosity

Till core





### Connection core - "filter"



## sweco 🕇





#### **INVESTIGATIONS**



#### Wooden sheet pile found upstream in the canal









### Displacement of sheet pile





## Cause of failure, slide in upstream direction, followed by dowstream erosion





#### Stability in the upstream direction



2.5 m draw down F = 0.97

## Fine grained fill resulting in high pore pressure uplift



Factor of safety as a function of drawdown





Failure in the upstream direction caused by the sudden drawdown



The turbine effect decreases and the operational center shuts it down, causing a sudden raise of the water level to the maximum retention level and overflow the damaged section and erodes the remaining part of the core. .... 4 hours ...





## Fine material from the core and remaining upper fill is washed into the coarse loosely compacted rock fill below.





#### Sealing of the breach.





#### Some of the weaknesses in the construction

- 1. Wooden sheet pile 0.1 m below maximum retention level. Sheet pile rotten in several places.
- 2. No downstream filter. Rock fill with voids in-between. Filter criteria not fulfilled at any part of the dam.
- 3. Unfavorable geometry in the connection between dam and intake. Poor connection to concrete structure after raise of core.
- 4. Steep upstream slope, dense and low permeable, partly finegrained supporting fill.
- 5. No instrumentation, lack of reservoir level reading in intake canal.

Conclusion – this dam had so many in-built deficiencies that it eventually would have failed anyway.

Fortunately in this case only 5 m<sup>3</sup> released.

#### **Current state**



**Granö – completely reconstructed** 





Hästberga – still awaiting court decision. Will affect insurence case

