Geophysical Techniques to Monitor Embankment Cracking (Laboratory Scale)

Robert Rinehart, Ph.D., P.E.
Materials Engineering & Research Laboratory

U.S. Department of the Interior
Bureau of Reclamation
Introduction

• Problem:
 – Internal Erosion (IE) represents one of the major hazards to earthen embankments
 – Current practices make it difficult to detect IE in its early stages
 • IE often not discovered until the emergency state
 – No means by which to determine a Factor of Safety against IE
 – IE can manifest after decades (or centuries!) of good performance

• Can geophysics aid in the early detection of IE?
 – Could provide continuous, remote monitoring
 – Could detect the onset or early progression of IE
 – Many different techniques to explore
Potential Techniques

- **Passive Acoustic Emission (AE)**
 - Passively “listening” for acoustic energy released during soil cracking, internal erosion, seepage, etc.
 - Can locate source via triangulation from several sensors
 - Other industries are able to extract information about the nature of the defect… geotech is not there yet!
Potential Techniques

• Cross-hole Sonic Tomography (CT)
 – P- and S-waves transmitted between boreholes (active)
 – Direct measurement of wave velocities \rightarrow material properties
 – Can perform imaging similar to CAT scan medical technology
Potential Techniques

• Self Potential (SP)
 – Measure the surface expression of very small electric fields created by fluid flow through porous media (and other sources)
 – Raw voltage measurements can indicate flow/gradient pathways directly, or can be used to perform inverse modeling for flow and geotechnical properties
Laboratory Model – Soil Crack Box

- Laboratory model created to study performance of granular filter materials:
 - Materials (filter and/or core) are compacted with box “closed” and then cracked by pivoting around a central axis using jacks
 - Constant head reservoir allows water to impinge on crack
 - Floor drains in the base of the model simulate filter drains, or can be closed to simulate an isolated filter or clogged drainage
 - Much more information available in Redlinger et al. ICSE-6 paper!
Instrumented Crack Box Tests

Test 1 (single stage filter)
Instrumented Crack Box Tests

Test 2 (two-stage filter)
Preliminary Results

- Self Potential allows you to track to seepage
 - Migration of water into filter zone
 - Downward flow of water towards drains
Preliminary Results

- **AE**
 - Clear contrast between no flow and concentrated flow (uncontrolled seepage)
 - Collapse of filter material crack (i.e., filter healing) leads to reduction in flow
Conclusions

- The geophysics methods investigated hold promise for early detection of cracking and IE
 - Signatures associated with cracking, self-healing, concentrated flow exist in the data and were well above the ambient noise in the challenging laboratory environment

- Time-lapse geophysics can show spatial and temporal changes in the subsurface of any embankment structure, at higher resolution (space and time) than traditional methods
 - More effective monitoring of several different failure modes
 - Very cheap and easy measurements, possible to install a widely distributed sensor network
Acknowledgements & Questions

• Coauthors:
 – Minal L. Parekh, Justin B. Rittgers, Michael A. Mooney, Andre Revil – Colorado School of Mines

• Funding and support provided by:
 – USBR Science & Technology Program