Measurement of Porosity Distributions during Erosion Experiments using Spatial Time Domain Reflectometry (Spatial TDR)

A. Scheuermann, T. Bittner, A. Bieberstein, H.-B. Mühlhaus

presented by

K. J. Witt
Motivation

Microscale porosity changes due to erosion

Stage I
- basic condition
- primary fabric (skeleton, grey particles) with unstable erodible fine fraction
- laminar flow (small gradients)

Stage II
- critical hydraulic gradient
- loosening, mobilisation and redestribution of erodible fines (increase of porosity)
- turbulent flow (non-linear relationship $v=f(i)$)

Stage III
- development of a fully fluidised bed (massive transport of erodible fines)
- piping like flow (convection cells)
- porosity waves with further increased i
Motivation

Microscale porosity changes due to erosion

Motivation

• Erosion processes are always accompanied by changes in porosity.

• Changes in porosity provide valuable information improving the understanding of erosion processes and providing data for the development of mathematical models.

• So far, no measurement method is available measuring porosity changes during erosion processes in a reasonable high resolution in space and time.

• Time Domain Reflectometry provides the possibility to measure transient changes in spatial porosity.
Introduction

- Time Domain Reflectometry is an electromegnetic measurement method providing information about the electric permittivity of soils, which are used to retrieve water content informations.

Conventional rod probes for measuring water contents of soils.

Source: IMKO Micromodultechnik GmbH
Introduction

- Spatial TDR offers the possibility to measure spatial permittivity distributions (providing e.g. water content distributions) along elongated transmission lines.

Feasibility Study

- Five rod probe in plexiglass cylinder is used to measure porosity changes along sample in cylinder.

Left: Five rod probe in plexiglass cylinder

Below: Cross-section through cylinder with probe

Feasibility Study

- Comparison between porosity measurements and calculated porosities.

Right: Measurement result (dashed line) in comparison with calculated porosity band (light grey columns).

Below: Calibration curve

\[\phi \quad 0.8 - 8 \text{ mm} \]
Feasibility Study

• Resulting accuracy within feasibility study

Application

Preliminary investigations

- porosity changes
- porosity
- discharge
- hydraulic head
- hydraulic gradient
Application

Preliminary investigations

Fluidization of fine particles starts at a gradient $i = 0.89 \pm 0.03$
Application

Preliminary investigations

- discharge
- hydraulic head
- hydraulic gradient
Application

Preliminary investigations

q: discharge
h: hydraulic head
i: hydraulic gradient
Application

Preliminary investigations

discharge
hydraulic head
hydraulic gradient
Application

Preliminary investigations

- discharge
- hydraulic head
- hydraulic gradient
Application

Preliminary investigations

discharge
hydraulic head
hydraulic gradient
Summary

- Measurements of porosity distributions are possible within cylindrical samples using spatial TDR with reasonable resolution (in space and time) and accuracy.

- A five rod probe was used in preliminary investigations for the measurement of porosity distributions during erosion test.

- Future investigations include the development of a new sensor in combination with an hydraulic set-up for the implementation of erosion experiments.

- Measured porosity distributions are used for improving the understanding of erosion processes and the development of mathematical models.
Achnowledgement

- ARC Discovery Project (DP120102188)
 Hydraulic Erosion of Granular Structures: Experiments and Computational Simulations
- Go8 / DAAD Personnel Exchange Project
 Experimental and Numerical Investigation of Erosion of Granular Media