
1 

PREDICTION OF SCOUR DEPTH AROUND PILE GROUP USING ANN  

A. KHOSRONEJAD  
Department of civil of Engineering, Tarbiat Modarres University, Tehran, Iran 

   M. GHODSIAN   
Department of civil of Engineering, Tarbiat Modarres University, Tehran, Iran 

(corresponding  author) 

R. ALIHEMMATI 
Department of Electrical of Engineering, Tarbiat Modarres University, Tehran, Iran 

 

 

ABSTRACT 

Prediction of the scour around a group of pile in the field exposed to oscillatory waves is very 
important for many offshore structure and coastal engineering projects. Conventional predictive 
formulas for the geometric properties of scour hole, however, are not able to provide sufficiently 
accurate results. In this paper the ANNs approach is used to predict the scour depth around pile 
group using dimensionless groups of parameters, namely, Reynolds number Re, Keulegan 
Carpenter number Kc, Shields parameter θ, and, densimetric Froude number Ns. The results show 
that a three-layer normal feed-forward multilayer perceptron with quick propagation (QP) learning 
rule can predict the scour depth successfully. 
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1. INTRODUCTION 
   Piles are structures widely used in coastal and ocean engineering. Since many of these 
structures are located on erodible beds, the estimation of scour depth is an essential task, 
because failure of the bed or the toe could cause collapse of the entire structure. In order 
to predict the scour depth around piles, the effects of flow condition and the bed material 
have to be considered. The field study on scour pile group has been done by Bayram and 
Larson (2000). It is extremely difficult to formulate mathematical models that accurately 
represent the scour process and geometry of scour hole, which develop under the 
influence of wave and current. Thus it is a common practice to apply empirical 
relationships based on laboratory data for estimation of the scour around piles. Since 
there are numerous effective parameters, and the interaction of these parameters is highly 
complicated, therefore, the accuracy of the empirical relationships is very subjective and 
highly depends on the user’s ability and knowledge. An artificial  neural network, on the 
other hand, is an applicable and powerful tool to solve this problem. In addition, its 
ability to learn from examples and to generalize its learning makes it well suited to 
situations where the problem complexity precludes the development of empirical 
relationships. This technique was used to estimate the scour properties around a 
configuration of piles (Kambekar and Deo, 2002). Khosronejad et al. (2003) studied the 
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scour properties around vertical pile using ANNs. They used the dimensional parameters 
such as wave length, water depth, wave period, maximum flow velocity and maximum 
shear velocity as input parameters of network. 
    In this paper nondimensional parameters such as pile Reynolds number, densimetric 
Froude number, Shields parameter and Keulegan carpenter number have been used as 
input parameters for designed network.  
 
2. OVERVIEW OF ANNS 

The ANN is a simplified mathematical representation of the biological neural network. 
It has the ability to learn from examples, recognize the various pattern of input data and 
to process information rapidly. A neural network is characterized by its architecture that 
represents the pattern of connections among nodes, its method of determining the 
connection weights and activation function. A typical ANN consists of number of nodes 
that are organized according to a particular arrangement. These nodes are generally 
arranged in layers, starting from the first input layer and ending at the final output layer. 
There can be several hidden layer, each hidden layer having one or more nodes (Jain, 
2001). 

   Three types of the most commonly used ANNs are normal feed-forward neural 
network, recurrent neural network, and competitive neural network (Islam and Kothari, 
2000). In this study the normal feed-forward neural network is used. 
   Normal feed forward neural networks are the most common among other ANNs and 
are widely used in function approximation and pattern classification (Islam and Kothari, 
2000). The most commonly used types of normal feed-forward are the so-called 
multilayered perceptron (MPL) network and the radial basis function (RBF) network. In 
either of these two networks, the neurons are arranged in layered structure. Information 
passes from the input to the output side. The neurons in one layer are connected to those 
in the next layer. Thus, the output of a neuron in a layer is only dependent on the inputs it 
receives from pervious layer and the corresponding weights. 
   Consider a multilayered perceptron network with n inputs, an output layer with o 
neurons, and a hidden layer with m neurons as shown in Fig. 1. Index i is referred to the 
individual output layer neurons, the index j and k refer to the hidden layer neurons and 
the input neurons, respectively. Inputs, feed to the hidden layer neurons through weights 

jkW and the outputs of hidden layer neurons feed to output layer neurons through 
weights ijW . A hidden layer neuron produces as output: 
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and an output layer neuron produces as output: 
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where jh  is the output of jth neuron in hidden layer, js is the weighted sum of jth neuron 

in hidden layer, kx is the input of kth neuron in input layer, iy  is the output of ith neuron 

in output layer and *
is  is the weighted sum of ith neuron in the output layer. 

 
 

    xk(1,n)                   hj(1,m)                  yi(1,o) 

 
Fig. 1.  Schematic of multilayer perceptron network 

 
   In this study the activation function 'f  for hidden layer is taken to be the arctangent 

[ )arctan()(' xxf = ]. This non-linearity makes the mapping produced by the network 
nonlinear. Since the outputs s is greater than one, the linear function is selected for output 
layer. 
 
3. NETWORK TRAINING ALGORITHMS 

   There are two types of network training, supervised and unsupervised (ASCE Task 
Committee, 2000-a). In supervised training algorithm, an external supervisor is needed to 
guide the training process, while in an unsupervised training algorithm it is not so.  
   In this study, supervised training algorithm has been used to update the weight matrix 
of ANN. The training patterns proposed by Bayram and Larson (2000) are used for this 
purpose. The quick-propagation (QP) used and  it was showed that the training procedure 
is done well. The aim is to reduce the global error E: 
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where p is total  number of training patterns and pE  is error for training pattern p given 
by: 
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where N is total number of output neurons; ky  is network output  at the kth output 
neuron and kt   is target output  at the kth output neuron. 
 
4. EFFECTIVE PARAMETERS ON THE SCOUR DEPTH 

The significant parameters controlling the scour depth around a pile exposed to 
oscillatory waves are: pile diameter D, wave height H, water depth h, wave period T, 
maximum flow velocity mU , maximum shear velocity fmU , specific gravity of sediment 
s, mean diameter of sediment d, acceleration due to gravity g and kinematic viscosity of 
fluid ν. Thus the maximum scour depth S may be expressed as follows (see Fig. 2): 

 
                                   S ),,,,,,,,,( υgdsUUThHDf fmm=                                      (5) 

 
The maximum shear velocity fmU  is defined as (Sumer et al., 1992 and Herbich, 1991): 
 
                                                        mfm UfU 2/1)5.0(=                                                    (6) 
 
where mU  is amplitude of the oscillatory flow velocity;  f is wave friction factor. By 
applying dimensional analysis, the significant nondimensional parameters controlling the 
scour depth around a pile exposed to oscillatory waves may be identified. Thus the 
equilibrium maximum scour depth S normalized by the pile diameter D expressed as 
follows (Herbich 1991; Sumer, et al 1992 b): 
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   Where NRe is pile Reynolds number, Ns is densimetric Froude number, θ  is Shields 
parameter and KC is Keulegan-Carpenter number. These nondimensional numbers are 
defined as follows: 
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The above parameters were employed in the present study to investigate various 
nondimensional parameters describing the scour depth.  
   The data set that were used for designing the networks were the field data reported by 
Bayram and Larson (2000). The range of variables is summarized in Table 1. These 
parameters have been employed in the present study as input vectors to train the designed 
neural network and describe the scour depth around vertical pile. Therefore, the numbers 
of input layer neurons are equal to four (NRe, Ns, Ө and KC) and the output neuron is S. 
The number of data is 58, out of which 48 were used for network training and 10 for 
testing the performance of trained network. 
 
 
 

 
 
 

 
Table 1. Range of data set used for training and testing the Network (Bayram and Larson, 

2000) 
Variables Range 

Shields parameter θ  0.08-0.64 
Pile Reynolds Number(NRe) 3.4*105-1.1*106 
Densimetric Froude number (Ns) 1.2-12.5 
Keulegan-Carpenter Number 7.6-22.5 
Scour depth     S(m) 0.42-2.1 
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5. DESIGNING AND TRAINING THE ANNs 
   This important step involves the determination of the ANN architecture and selection 
of a training algorithm. An optimal architecture may be considered the one yielding the 
best performance in term of error minimization, while retraining a simple and compact 
structure. A trial-and-error procedure is generally applied to decide on the optimal 
architecture. The number of input and output neurons is problem dependent. 
   In the current study, first we used two neurons at output layer and four neurons at input 
layer and ten or more neurons in hidden layer. In this case the network was trained with 
different architectures and results showed that the network can not learn accurately. The 
result is shown in table 2. As shown in Tables 2 the normal feed-forward architecture 
with quick-propagation learning rule and one hidden layer is the best choice for this case, 
because the network learning was obtained with the least epochs and with minimum rms 
error.  
 
 

Table 2. Results of designed neural network with one neuron in output layer for relative scour depth (S/D) 

 

6. THE ANNS OUTPUT RESULT VALIDATION 
   Similar to other modeling approaches in hydraulics, the performance of the trained 
ANN can be fairly evaluated by subjecting it to the new patterns that have not been seen 
during training process. The performance of the network can be determined by 
computing the error between predicted and observed values. In order to assess the 
networks ability, the outputs of networks for new patterns is shown in Fig. 3.  As shown 
in Fig. 3, the trained networks could learn desired mapping successfully.  
 
 

 
Network 

 
Learning 

rule 

No. of 
neurons 

(1st 
hidden 
layer) 

 
No. of  
epochs 

Mean  
training  

error 

Mean  
testing  
error 

Multilayer 
perceptro

n 
networks 

Quick-
propagation 
(QP) 

10  
12 
15 

20000 
32000 
34000 

0.015  
0.0011 

0.00012 

 

0.51 
0.014 
0.008  
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Fig. 3 Comparison of observed and computed (ANN results) nondimensional scour depth 
 
 
7. CONCLUSION 
   The multilayer perceptron network is applied to estimate scour depth around vertical 
piles. It was shown that use of nondimensional  parameters as input pattern produce 
accurate results.  The designed network could learn successfully and the rms error was 
very small. The designed ANN model with normal feed-forward architecture and quick-
propagation learning rule and a single hidden layer with ten neurons provide sufficiently 
good training and testing acuracy. 
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