Development of Multifunction Scour Monitoring Device
For Railway Bridge Piers
Part 2: Results of field testing

Yosuke MASUI1, Osamu SUZUKI2, Masato ABE3, Masahiko SAMIZO4,
Hiroyuki FURUKAWA5 and Makoto SHIMAMURA6

1 Member of JSCE, Researcher, Disaster Prevention Research Laboratory, East Japan Railway Company
(2-479, Nisshin-cho, Kita-ku, Saitama-shi, Saitama-pref. 331-8513, Japan)
E-mail: y-masui@jreast.co.jp

2 Member of JSCE, Assistant Manager, Disaster Prevention Research Laboratory, East Japan Railway Company
(2-479, Nisshin-cho, Kita-ku, Saitama-shi, Saitama-pref. 331-8513, Japan)
E-mail: osamu-suzuki@jreast.co.jp

3 Member of JSCE, Chief Researcher, BMC Corporation
(2-6, Nakase, Mihama-ku, Chiba-shi, Chiba-pref. 261-7125, Japan)
E-mail: masato@hashimori.jp

4 Member of JSCE, Senior Researcher, Disaster Prevention Technology Division, Railway Technical Research Institute
(2-8-38, Hikari-cho, Kokubunji-shi, Tokyo-pref. 185-8540, Japan)
E-mail: samizo@rtri.or.jp

5 Chief Engineer, Yamatake Corporation
(1-12-2, Kawana, Fujisawa-city, Kanagawa-pref. 251-8522, Japan)
E-mail: furukawa-hiroyuki@jp.yamatake.com

6 Member of JSG and JSCE, Director, Disaster Prevention Research Laboratory, East Japan Railway Company
(2-479, Nisshin-cho, Kita-ku, Saitama-shi, Saitama-pref. 331-8513, Japan)
E-mail: m-shimamura@jreast.co.jp

East Japan Railway Company (JR-EAST) has developed a new scour monitoring device which consists of
one clinometer and triaxial accelerometer. The device is set on the top of a bridge pier, and evaluates the
soundness of the bridge pier based on observation of the inclination of the bridge pier, the acceleration
response of the bridge pier excited by various sources, such as, train live load, microtremor, and earthquake.
The current paper reports the results of field testing to determine the specifications of sensors, and confirm
these methods.

Key Words: Scour monitoring device, triaxial accelerometer, microtremor during flood, evaluation of
soundness of bridge pier

1. INTRODUCTION

The train operation should be suspended whenever the bridges are at risk of scour damages. It is
difficult for railway engineers to evaluate the extent of scour damage under flood water by visual
inspection. Therefore, JR-EAST set train regulation rules based on monitoring of water level and
ingclination of bridge pier in order to avoid fatal train accidents due to scour of bridge pier foundation
during flood. The current rules have following problems:
(a) There is a room to improve reliability of the train regulation rule based on water level monitoring.
The current rules are considered overly conservative.
(b) Determination to resume train operation is difficult. The visual inspection of the bridge pier
foundation is very difficult under flood water.
(c) The clinometric type scour monitoring device cannot issue precautionary alarm before a bridge pier is inclined.
In order to solve above problems, a new scour monitoring device which can monitor soundness of the bridge pier in real time is being developed. More details of background of the development and concept of the new scour monitoring device are discussed in the companion paper, “Development of Multifunction Scour Monitoring Device for Railway Bridge Piers, Part1”.

2. NEW SCOUR MONITORING DEVICE

The new scour monitoring device consists of one clinometer and triaxial accelerometer. This device is set on the top of a bridge pier. Inclination of the bridge pier is monitored by the clinometer, and when the inclination angle exceeds the threshold value, the order to suspend train operation is issued. This function is as same as that of current scour monitoring device. Furthermore, the new scour monitoring device forecast the future inclination using time series data and simple exponential growth model\(^1\). The added triaxial accelerometer measures the acceleration response of the bridge pier excited by train live load, microtremor, and earthquake, and soundness of the bridge pier is evaluated based on those acceleration responses.

3. FIELD TESTING

(1) Objectives of field testing

The new scour monitoring device evaluates the soundness of bridge pier using three kinds of vibration; train-induced vibration, microtremor during flood and earthquake. The specifications of the triaxial accelerometer are so designed to measure all kinds of vibration which have different characteristics, e.g., the train-induced vibration has strong higher frequency component, the amplitude of microtremor during flood is small, and so on. Therefore, it is necessary to confirm the applicability of the selected triaxial accelerometer through the long-term observation under various loadings. The evaluation method using acceleration response excited by train-live-load has been proposed by Suzuki et al\(^2\). In order to confirm reliability of this method, long-term observation is also necessary.

For these objectives, a field testing was carried out on actual railway bridge.

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic specifications</td>
<td></td>
</tr>
<tr>
<td>Acceleration</td>
<td></td>
</tr>
<tr>
<td>measurement range</td>
<td>±2000Gal (X-,Y-, and Z-axis)</td>
</tr>
<tr>
<td>measurement resolution</td>
<td>2Gal</td>
</tr>
<tr>
<td>Acceleration sampling</td>
<td>10ms</td>
</tr>
<tr>
<td>Acceleration</td>
<td></td>
</tr>
<tr>
<td>waveform recording</td>
<td>10ms-sampling for 120s, X-,Y-,</td>
</tr>
<tr>
<td></td>
<td>and Z-axis waveform</td>
</tr>
<tr>
<td>Threshold of</td>
<td>5Gal</td>
</tr>
<tr>
<td>beginning</td>
<td></td>
</tr>
<tr>
<td>measurement</td>
<td></td>
</tr>
<tr>
<td>Measurement time</td>
<td>2 minutes</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
</tr>
<tr>
<td>specifications</td>
<td></td>
</tr>
<tr>
<td>Rated voltage</td>
<td>12Vdc ±10% or 24Vdc ±10%</td>
</tr>
<tr>
<td>Current consumption</td>
<td>380/180mAdc</td>
</tr>
</tbody>
</table>
3

(2) Configurations of bridge
The field testing was carried out for three months on an actual railway bridge pier. The view of the bridge is shown in Fig.1. This bridge is single truck bridge over river and consists of truss girders, deck plate girders, concrete bridge piers and caisson foundations. The deck plate girders span between P3 to P21. The triaxial accelerometer is set on P4 of this bridge, and the acceleration responses excited by train live load are observed. The characteristics of the pier are shown in Table 1. The natural frequency of P4 was measured by impact vibration testing on December 20th, 2007.

(3) Experimental observation system
The experimental monitoring system is developed upon commercial seismometers; Yamatake SES60 and SES60R. The characteristics of the accelerometer embedded into the seismometers are shown in Table 2. SES60R is modification of SES60 with enhanced capability of higher acceleration measurement resolution. These two types of sensors, data transmission equipment, and a data storage are assembled and mounted on P4. The experimental observation system is shown in Fig.2.

4. EVALUATION OF SOUNDNESS OF BRIDGE PIER BY TRAIN-INDUCED VIBRATION

(1) Method for estimation of RMS-Index
In order to evaluate soundness of bridge pier by train-induced vibration, “root mean square (RMS)” is calculated by the time series of acceleration response. Although each RMS value scatters, there is the strong linear correlation between the vertical and transverse RMS values. As scour of bridge foundation developed, the gradient of linear regression line is expected to change.

(2) Observations on actual bridge piers
The relation between the vertical and transverse RMS values observed on P4 of bridge A is shown in Fig.3. The observed strong linear correlation has similar tendency with the previous studies using reduced experimental model and other actual bridge piers. Throughout the field testing, two types of train passed on this pier. Each load is about 10t and 8t per an axle. As a result of more than three months observation, it is found that this correlation relationship is stable even with considerable the temperature fluctuation and the difference of train loads.

According to reference 2, it is proposed that the gradient of linear regression line is applied as the indicator for evaluation of soundness of bridge piers. In theory, the increase of the value of the gradient, i.e., larger relative transverse response, shows the increase of the risk of the scour hazard. To obtain the relationship between structural integrity and the value of the gradient of linear regression line, accumulation of statistical data including other piers with longer period is required.

![Fig.2 The experimental observation system](image)

![Fig.3 The relation between the vertical and transverse RMS values](image)
5. EVALUATION OF SOUNDNESS OF BRIDGE PIER BY FLOOD-INDUCED VIBRATION

(1) Method for calculation on natural frequency
In order to observe the symptom of scour damage, evaluation using a natural frequency of the bridge pier is popular in Japan\(^3\), because the natural frequency generally decreases as scour develops. The technique for this evaluation is mainly carried out with percussion of heavy weight, such as steel ball weighting 30kg. Due to this heavy physical work, it is difficult to exercise this inspection during flood condition.

In order to develop a practical method to quantitatively and easily evaluate the structural integrity of bridge pier foundations during flood, Samizo et al. proposed method to calculate natural frequency of a bridge using microtremor observed during flood\(^4\).

In the observation, a natural frequency was calculated by the method shown in Fig.4. The measurement time is 2 minutes. Since train-induced vibration is trigger to start measurement of microtremor, the first half of the data is under the influence of the strong train vibration. Thus the second half of the data is employed. The time history is split into 3 series of data which are shifted 10 seconds and that has 40.96 seconds data.

(2) Observation of the microtremor during flood
During the field testing, typhoon hit the area and the microtremor of P4 during flood could be observed. The water level began to rise at 9:00 a.m. on Sep. 6th, and reached maximum at 8:00 a.m. on Sep. 7th. The time series of the water level which is measured by water level gauge set at P4 is shown in Fig.5.

The frequency spectrum is calculated using microtremor obtained at 0:10 a.m. on Sep 6th when water level is about the same as usual (Fig.6). As of this time, no distinct peak appeared at the point of the natural frequency. The data obtained at the most highest water level is shown in Fig.7. It is clear that the spectrum peak largely similar to the natural frequency. Using this method, it is possible to
evaluate the integrity of the pier by comparing the natural frequency before and after flood.

6. CONCLUSION

From this field testing, following results are obtained.
(a) The relation between the vertical and transverse RMS values are stable even with considerable the temperature fluctuation and the difference of train loads.
(b) Using the microtremor during flood, a natural frequency of a bridge pier can be obtained.

From these results, it is found that natural frequency obtained during flood can be used to support determination of resumption of train operation. Moreover, it is found that a symptom of a scour damage of a bridge pier foundation can be detected using RMS-Index or natural frequency calculated during flood before the bridge pier is inclined.

At present, prototype of the scour monitoring device is designed based on the results and further field testing of the prototype is planned to be carried out from this summer.

REFERENCES