Field observations of momentary liquefaction produced by waves when air is trapped inside a sandy soil

Mathieu MORY
Laboratoire SIAME, Université de Pau et des Pays de l’Adour

Hervé MICHALLET
LEGI (CNRS, Université de Grenoble)

• Transmission of pressure variations inside the soil
• Momentary liquefaction caused by waves in a sandy soil
• Liquefaction by build up of pore pressure in fine sediments
Compressibility of a air-water mixture
(homogeneous dispersion of micro-bubbles in water)

\[\alpha = \text{volume gas content} = \text{water}(1-a) + \text{air} \]

Relation between compressibility and sound speed

\[\frac{V}{VP} = \frac{P}{P} = \frac{1}{c^2} \]

Wood’s law

- High increase of compressibility for small air content

\[\text{water} + \frac{\text{water}}{P_{ref}} \]

with

\[\text{water} = 4.5 \times 10^{10} \text{ Pa}^{-1} \]

- Sound speed can reach small values
Flow in the sandy soil resulting from the high and low pressures applied on the soil by water waves

Hydrodynamics
Waves: $\omega, \lambda(\omega), P_0$
Viscosity of water: μ
Soil intrinsic permeability: k [m2]
Soil porosity: ε

Fluid compressibility
Compressibility: χ [Pa$^{-1}$]
Air content in soil: α
Adiabatic index of dry air: γ

Pressure variations inside the soil

$$P(z, x, t) = \frac{1}{P_0} \left[e^{-\lambda(z)} + \frac{m}{1 + m} e^{i \lambda(z)} \right] e^{i (\omega t - \phi)}$$

$$m = \frac{G_{\text{fluid}}}{1 - 2n} = 2k^{\frac{1}{2}} \left(\frac{G_{\text{fluid}} + G_{\text{skeleton}}}{} \right)^{1/2}$$

Elastic soil behavior
Shear modulus: G [Pa]
Poisson modulus: ν
Compressibility for 1D restrained deformation of skeleton: χ_{skeleton}

$$\chi_{\text{skeleton}} = \frac{1}{2(1 - 2n)} G$$

References:
Sakai, Hatanaka & Mase, JWPOCE, 1992
Gratiot & Mory, ISOPE Conf, 2000
De Groot et al., JWPOCE, 2006
Flow in the sandy soil resulting from the high and low pressures applied on the soil by water waves

\[
P(z, x, t) = \frac{1 + me^{-lz}}{1 + m} e^{\frac{m}{1 + m} e^{(i-1)z/d} e^{i(\lambda x - \omega t)}}
\]

\[
m = \frac{1}{2} G_{\text{water}} + \frac{a_{\text{Pref}}}{P_{\text{ref}}}
\]

Leading term in saturated soil

\[
m = \frac{1}{2} G_{\text{water}} \ll 1
\]

Slow decrease with increasing depth of pressure variations in the soil

Low vertical pressure gradient

Leading term for low gas content

\[
2 \times 10^{-3} \ll \alpha \ll 4 \times 10^{-2}
\]

\[
m \gg 1
\]

\[
\frac{2 P_{\text{ref}} k^{0.5}}{\lambda} \ll 2
\]

Independent from elastic properties of the soil skeleton

High vertical pressure gradient
For usual parameters in coastal areas, high vertical pressure gradient inside the soil – and hence momentary liquefaction - can only be achieved when gas is trapped in the soil.

Such conditions are eventually met in intertidal areas on beaches.
Occurrence of momentary liquefaction depends on grain size

Momentary liquefaction can only occur in soils of sufficient high grain size, such as sands

Pressure variations need be transmitted over a distance of one wave length \(\lambda \) in a time less than the wave period \(T_{\text{wave}} \)

Transmission of pressure variations in a porous medium is a diffusive phenomenon with diffusivity coefficient

\[
\frac{k_{\text{medium}}}{k_{\text{medium}}} = \frac{k}{1} = \frac{k}{1} \left\{ \frac{1}{\text{fluid} + \text{skel}} \right\}
\]

Soil drainage sustains flow variations within a wave period when

\[
T_{\text{wave}} > \left(\frac{2}{l} \right)^2 = \left(\frac{2}{k} \right)^2 \left\{ \frac{1}{\text{fluid} + \text{skel}} \right\}
\]

or

\[
k > \left(\frac{2}{T_{\text{wave}}} \right)^2 \left\{ \frac{1}{\text{fluid} + \text{skel}} \right\}
\]

i.e. sandy soils
In fine sediments (i.e. silts or mud) liquefaction can result from the build up of pore pressure inside the bed.

Waves apply cyclic stresses on the soil skeleton, thus producing a contraction of the bed.

Pore pressure increases in the soil.

Soil drainage is insufficient to release the pore pressure in the soil (residual pore pressure).

Experiments on the floatation of pipelines in liquefied silt soils

De Groot et al., JWPOCE, 2006

Sumer et al., Coastal Eng., 1999
Sumer et al., JWPOCE, 2006
FP5 project “Liquefaction Around Marine Structures” (LIMAS), partially funded by the European Commission

Coordination : Prof. M. Sumer
J. Waterway, Port, Coastal, and Ocean Engineering
Volume 132, N° 4, 2006
Volume 133, N° 1, 2007

Field studies of pressure transmission inside a sandy soil
Capbreton, Atlantic Ocean, France

Observation of momentary liquefaction caused by waves

Emphasis on the effect of gas content inside the soil

Mory et al., JWPCOE, 2007
Michallet, Mory & Piedra Cueva, JGR, 2009
Instrumentation

Pressure measurements inside the soil and determination of the bed level

Geoendoscopic camera system for gas content observation

LERMES, Clermont-Ferrand, France
Decay of pore pressure variations inside the sandy soil

Water

Mobile soil

Immobile soil

Sept. 25, 2003

t=15h48

Criterion for momentary liquefaction:

\[
\frac{P_{i,i}}{P_{i,i-1}} = \frac{P_i}{P_{i-1}} > h \frac{\Delta P \text{ (sed)}}{\Delta P \text{ (water)}} (1) +
\]

ICSE 6 – Paris – August 30, 2012

Sept. 25, 2003

t=15h48
Erosion is produced during rising tide. Sand is re-deposited at the end of the tide.

Occurrence of momentary liquefaction events:
• mainly during the initial stage of the tidal period
• requires a minimum wave height level

ICSE 6 – Paris – August 30, 2012

Oct. 1 - Corner
H_s = 69 cm

Sept. 24 - Wall
H_s = 123 cm

Sept. 25 - Wall
H_s = 67 cm
Analysis of the transmission inside the soil of pressure variations by Fourier frequency series

Mory et al., 2007
Michallet, Mory & Piedra Cueva, 2009

Change in soil properties during a tidal period

Damping of pore pressure variations inside the soil is weaker at the end of tidal period than during rising tide

Effect also seen on phase shifts
Vertical profiles of gas content inside the soil measured by a geoendoscopic camera

Gas escapes from the upper soil layer during rising tide

Geo-endoscopic data

Extrapolated from pressure damping data, using Sakai eqs.

Sept. 25, 2003

P. Breul, LERMES
Comparison of the measured damping of pore pressure variations in the soil with the prediction by Sakai eqs. using the measured profiles of air contained in the soil

Loose sand: $\varepsilon=0.5,$

$G=2\times10^7$ Pa, $\nu=0.498,$

$k=2\times10^{-11}$ m2

Vertical profiles of damping of pore pressure indicate the vertical variation inside the bed of the gas content
Comparison of the measured damping of pore pressure variations in the soil with the prediction by Sakai eqs. for constant gas content along the vertical

Synthesis of 13 tidal cycles over 9 days:
Significant wave height range : $0.19 \, \text{m} < H_s < 1.23 \, \text{m}$.
2 positions : middle of the wall or bunker corner

Loose sand parameters (solid line):
$\varepsilon=0.5,$
$G=2 \times 10^7 \, \text{Pa}, \ \nu=0.49,$
$k=2 \times 10^{-11} \, \text{m}^2$

Compact sand parameters (dashed line):
$\varepsilon=0.4,$
$G=2 \times 10^8 \, \text{Pa}, \ \nu=0.33,$
$k=2 \times 10^{-11} \, \text{m}^2$

A significant amount of gas is contained inside the upper soil layers
Gas modifies the transmission of pressure variations inside the soil

ICSE 6 – Paris – August 30, 2012
Conclusions

Air content is a key parameter for quantifying the transmission of wave induced pore pressure variations inside a sandy soil.

A good agreement is found between observations in the field and the prediction made using the Sakai eqs.

Air content was found at Capbreton to vary during a tidal period inside the upper soil layer.

For conditions achieved in the field, the presence of gas inside the soil allows to meet conditions for which momentary liquefaction of a sandy soil occur, even for moderate wave height.

In fine sediments, where liquefaction can be produced by the build up of pore pressure, the presence of air reduces the build up of pore pressure.
Observations of liquefaction in the laboratory (LEGI)

Using lightweight sediment \((d_{50} = 0.64 \text{ mm}, \frac{\rho_{\text{sed}}}{\rho_{\text{water}}} = 1.18) \) allows to meet the Shield and Rouse similarity between the field and the laboratory (Grasso et al., 2009)

Experiments performed in controlled conditions with un-saturated bed:

\[
C_{\text{gas}} \sim 1\% \text{ to } 8\%
\]

Liquefaction phenomena are promoted in the laboratory
Compact and unsaturated bed, side view
Loose and unsaturated bed, rear view
Mutlu SUMER
Technical University of Denmark

This book, whose primary aim is to describe liquefaction processes and their implications for marine structures such as pipelines, sea outfalls, quay walls and caisson breakwaters, discusses the subject of soil liquefaction in the marine environment.

In addition, the physics of liquefaction (including examples illustrating the catastrophic consequences of soil liquefaction with regard to marine structures) are described, and the mathematical modelling of liquefaction is treated in detail. Also, carefully selected numerical examples support the discussion of assessing liquefaction potential, and benchmark cases such as buried gas pipelines and their floatation, caisson breakwaters, cover stones and their interaction with liquefied soil along with counter measures are investigated.